数据结构中的二叉树(示例)

什么是二叉树?

二进制这个词的意思是两个。在树形数据结构“二叉树”中,表示一棵树,其中每个节点最多可以有两个子节点(左节点和右节点)。它是一棵简单的二叉树。

然而,还有另一种更常用的二叉树,具有多种用途。它被称为二叉搜索树(BST)。这种树可以使搜索算法快得多,精确到 log(n) 的时间复杂度。在数据结构中,n 表示二叉树中的节点数。

二叉树和二叉搜索树之间有什么区别?

BST 和普通二叉树的区别在于,BST 的左节点值小于根节点,右节点值大于根节点。因此,左子树的值总是小于根节点,右子树的值总是大于根节点。

The Differences Between Binary Tree and Binary Search Tree

二叉搜索树示例

下面以二叉搜索树的概念为例。

Example of Binary Search Trees

在这里,您可以看到所有节点都遵循给定的规则。二叉搜索树中最大节点数有一个公式。如果我们观察上面的树,我们可以看到除了所有叶节点之外,每个节点都有两个子节点。并且给定二叉树的高度 (h) 为 4。公式是 **2h – 1**。所以,结果是 15。

Example of Binary Search Trees

Example of Binary Search Trees

上图不是满二叉树或平衡二叉树,而是称为完全二叉树或平衡二叉树。还有另一种数据结构叫做 AVL(另一种类型的二叉树),它优化了二叉树的高度,并且可以像图 3 一样更快地为 BST 进行搜索。

尝试计算上面给出的二叉树的中序遍历。您会发现它会得到一个非递减的排序数组,并且遍历算法与二叉树相同。

二叉树的类型

这里是一些重要的二叉树类型

  • 满二叉树:在此二叉树中,每个节点可以有 0 个或 2 个子节点。此类型的二叉树不允许只有一个子节点。因此,除了叶节点,所有节点都将有 2 个子节点。

Types of Binary Tree

  • 满二叉树:每个节点可以有 0 个或 2 个节点。这看起来像满二叉树,但所有叶元素都偏向左子树,而满二叉树的节点可以位于右子树或左子树。

Types of Binary Tree

  • 完美二叉树:所有节点必须有 0 个或 2 个节点,并且所有叶节点应位于同一级别或同一高度。上面满二叉树结构的例子不是完美二叉树,因为节点 6 和节点 1、2、3 不在同一高度。但完全二叉树的例子是完美二叉树。
  • 退化二叉树:每个节点只能有一个子节点。搜索、插入和删除等所有操作都需要 O(N) 时间。

Types of Binary Tree

  • 平衡二叉树:在此二叉树中,左右子树的高度差最多为 1。因此,在添加或删除节点时,我们需要再次平衡树的高度。这种自平衡二叉树称为 AVL 树

Types of Binary Tree

BST 有三个基本操作。下面将详细讨论这些。

用 C 和 C++ 实现二叉树

#include <iostream>
#include <bits/stdc++.h>
using namespace std;
struct Node
{
   int value;
   struct Node *left, *right;
}
struct Node *getEmptynode(int val)
{
   struct Node *tempNode = (struct Node *)malloc(sizeof(struct Node));
   tempNode->value = val;
   tempNode->left = NULL;
   tempNode->right = NULL;
   return tempNode;
}
struct Node *successor(struct Node *node)
{
    struct Node *present = node;
// going to the left most node
    while (present != NULL && present->left != NULL)
    {
       present = present->left;
    }
     return present;
 }
struct Node *insert(struct Node *node, int value)
{
   if (node == NULL)
   {
      return getEmptynode(value);
   }
   if (value < node->value)
   {
      node->left = insert(node->left, value);
   }
   else
   {
      node->right = insert(node->right, value);
   }
      return node;
}
int searchInBST(struct Node *node, int value)
{
   struct Node *current = node;
   while (current->value != value)
    {
    if (current->value > value)
      {
      current = current->left;
      }
    else
     {
     current = current->right;
     }
   if (current == NULL)
     {
    return 0;
     }
   }
return 1;
}
void inorder(struct Node *root)
{
 if (root != NULL)
  {
   inorder(root->left);
   cout << root->value << " ";
   inorder(root->right);
  }
}
struct Node *deleteNode(struct Node *node, int value)
{
 if (node == NULL)
  {
   return node;
  }
 if (value < node->value)
  {
   node->left = deleteNode(node->left, value);
  }
else if (value > node->value)
 {
   node->right = deleteNode(node->right, value);
 }
else
{
if (node->left == NULL)
 {
 struct Node *temp = node->right;
 free(node);
 return temp;
 }
 else if (node->right == NULL)
 {
 struct Node *temp = node->left;
 free(node);
 return temp;
  }
 struct Node *temp = successor(node->right);
 node->value = temp->value;
 node->right = deleteNode(node->right, temp->value);
}
return node;
}
int main()
 {
  struct Node *root = NULL;
  root = insert(root, 8);
  root = insert(root, 4);
  root = insert(root, 12);
  root = insert(root, 2);
  root = insert(root, 6);
  root = insert(root, 10);
  root = insert(root, 14);
  root = insert(root, 1);
  root = insert(root, 3);
  root = insert(root, 5);
  root = insert(root, 7);
  root = insert(root, 9);
  root = insert(root, 11);
  root = insert(root, 13);
  root = insert(root, 15);

 cout << "InOrder Traversal after inserting all nodes: " << endl;
 inorder(root);
 root = insert(root, -10);
 cout << "\nInOrder Traversal after inserting -10 : " << endl;
 inorder(root);
 cout << "\nSearching -5 in the BST: " << searchInBST(root, -5) << endl;
 cout << "Searching -10 in the BST: " << searchInBST(root, -10) << endl;
 root = deleteNode(root,8);
 cout<<"After deleting node 8, inorder traversal: "<<endl;
 inorder(root);
 root = deleteNode(root,-10);
 cout<<"\nAfter deleting node -10, inorder traversal: "<<endl;
 inorder(root);
}

输出

InOrder Traversal after inserting all nodes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

InOrder Traversal after inserting -10 :
10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Searching -5 in the BST: 0
Searching -10 in the BST: 1

After deleting node 8, inorder traversal:
-10 1 2 3 4 5 6 7 9 10 11 12 13 14 15

After deleting node -10, inorder traversal:
1 2 3 4 5 6 7 9 10 11 12 13 14 15

用 Python 实现二叉树

class Node:
def __init__(self,value):
      self.left = None
      self.right = None
      self.value = value
def insert(root,value):
      if root == None:
          return Node(value)
      if value< root.value:
          root.left = insert(root.left,value)
      else:
          root.right = insert(root.right,value)
          return root
  def searchInBST(root,value):
      current = root
  while current.value != value:
  if current.value > value:
      current = current.left
  else:
      current = current.right
  if current == None:
      return "Not found"
      return "Found"
def inorder(root):
    if root != None:
      inorder(root.left)
      print(root.value,end=" ")
      inorder(root.right)
def successor(root):
    present = root
    while present != None and present.left != None:
    present = present.left
      return present
def deleteNode(root,value):
    if root == None:
      return root
    if value < root.value:
        root.left = deleteNode(root.left, value)
    elif value>root.value:
        root.right = deleteNode(root.right, value)
    else:
    if root.left == None:
        temp = root.right
        root = None
        return temp
    elif root.right == None:
        temp = root.left
        root = None
        return temp
        temp = successor(root.right)
        root.value = temp.value
        root.right = deleteNode(root.right, temp.value)
        return root
        root = Node(8)
        root = insert(root, 4)
        root = insert(root, 12)
        root = insert(root, 2)
        root = insert(root, 6)
        root = insert(root, 10)
        root = insert(root, 14)
        root = insert(root, 1)
        root = insert(root, 3)
        root = insert(root, 5)
        root = insert(root, 7)
        root = insert(root, 9)
        root = insert(root, 11)
        root = insert(root, 13)
        root = insert(root, 15)
  print("InOrder Traversal after inserting all nodes: ")
  inorder(root)
  root = insert(root, -10)
  print("\nInOrder Traversal after inserting -10 : ")
  inorder(root)
  print("\nSearching -5 in the BST: ",searchInBST(root, -5))
  print("Searching -5 in the BST: ",searchInBST(root, -10))
  root = deleteNode(root,8)
  print("After deleting node 8, inorder traversal:")
  inorder(root)
  root = deleteNode(root,-10)
  print("\nAfter deleting node -10, inorder traversal:")
  inorder(root)

输出

InOrder Traversal after inserting all nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

InOrder Traversal after inserting -10 : -10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Searching -5 in the BST: Not found 

Searching -5 in the BST: Found After deleting node 8, inorder traversal: -10 1 2 3 4 5 6 7 9 10 11 12 13 14 15 

After deleting node -10, inorder traversal: 1 2 3 4 5 6 7 9 10 11 12 13 14 15

二叉树的应用

以下是二叉树的一些常见应用

  • 按排序顺序组织节点数据
  • 用于编程语言库中的映射和集合节点对象。
  • 在数据结构中搜索元素

» 学习我们的下一个教程关于 组合算法