R 随机森林教程及示例
R中的随机森林是什么?
随机森林基于一个简单的想法:“群众的智慧”。多个预测器的结果聚合比最佳单个预测器能提供更好的预测。一组预测器称为集成。因此,这种技术被称为集成学习。
在之前的教程中,您学习了如何使用决策树进行二元预测。为了改进我们的技术,我们可以训练一组决策树分类器,每个分类器使用训练集的不同随机子集。为了进行预测,我们只需获得所有个体树的预测,然后预测获得最多投票的类别。这种技术被称为随机森林。
步骤 1) 导入数据
为了确保您拥有与教程中相同的用于决策树的数据集,训练集和测试集存储在互联网上。您可以导入它们而无需进行任何更改。
library(dplyr) data_train <- read.csv("https://raw.githubusercontent.com/guru99-edu/R-Programming/master/train.csv") glimpse(data_train) data_test <- read.csv("https://raw.githubusercontent.com/guru99-edu/R-Programming/master/test.csv") glimpse(data_test)
步骤 2) 训练模型
评估模型性能的一种方法是在多个不同的较小数据集上进行训练,并在其他较小的测试集上进行评估。这被称为F折交叉验证功能。R有一个函数可以随机分割大小几乎相同的多个数据集。例如,如果 k=9,则模型将在九个折叠上进行评估,并在剩余的测试集上进行测试。此过程将重复进行,直到所有子集都已评估。此技术广泛用于模型选择,特别是当模型具有要调整的参数时。
现在我们有了评估模型的方法,我们需要弄清楚如何选择能够最好地泛化数据的参数。
随机森林选择随机特征子集并构建许多决策树。模型平均化了决策树的所有预测。
随机森林具有一些可以更改以改进预测泛化的参数。您将使用RandomForest()函数来训练模型。
R 随机森林的语法是
RandomForest(formula, ntree=n, mtry=FALSE, maxnodes = NULL) Arguments: - Formula: Formula of the fitted model - ntree: number of trees in the forest - mtry: Number of candidates draw to feed the algorithm. By default, it is the square of the number of columns. - maxnodes: Set the maximum amount of terminal nodes in the forest - importance=TRUE: Whether independent variables importance in the random forest be assessed
注意:随机森林可以基于更多参数进行训练。您可以参考手册查看不同的参数。
调优模型是一项非常繁琐的工作。参数之间存在很多可能的组合。您不一定有时间尝试所有这些。一个好的替代方法是让机器为您找到最佳组合。有两种可用方法
- 随机搜索
- 网格搜索
我们将定义这两种方法,但在教程中,我们将使用网格搜索来训练模型
网格搜索定义
网格搜索方法很简单,将使用交叉验证在您传递给函数的所有组合上评估模型。
例如,您想尝试使用 10、20、30 棵树的模型,并且每棵树将在 mtry 等于 1、2、3、4、5 的数量上进行测试。那么机器将测试 15 个不同的模型
.mtry ntrees 1 1 10 2 2 10 3 3 10 4 4 10 5 5 10 6 1 20 7 2 20 8 3 20 9 4 20 10 5 20 11 1 30 12 2 30 13 3 30 14 4 30 15 5 30
算法将评估
RandomForest(formula, ntree=10, mtry=1) RandomForest(formula, ntree=10, mtry=2) RandomForest(formula, ntree=10, mtry=3) RandomForest(formula, ntree=20, mtry=2) ...
每次,随机森林都会尝试进行交叉验证。网格搜索的一个缺点是实验次数。当组合数量很高时,它很容易变得爆炸式增长。为了克服这个问题,您可以使用随机搜索
随机搜索定义
随机搜索与网格搜索的最大区别在于,随机搜索不会评估搜索空间中的所有超参数组合。相反,它会在每次迭代中随机选择组合。优点是降低了计算成本。
设置控制参数
您将按照以下步骤构建和评估模型
- 使用默认设置评估模型
- 查找最佳 mtry
- 查找最佳 maxnodes
- 查找最佳 ntrees
- 在测试数据集上评估模型
在开始参数探索之前,您需要安装两个库。
- caret:R 机器学习库。如果您安装了 R 并安装了 r-essential。它已经在库中
- Anaconda:conda install -c r r-caret
- e1071:R 机器学习库。
- Anaconda:conda install -c r r-e1071
您可以将它们与 RandomForest 一起导入
library(randomForest) library(caret) library(e1071)
默认设置
K 折交叉验证由 trainControl() 函数控制
trainControl(method = "cv", number = n, search ="grid") arguments - method = "cv": The method used to resample the dataset. - number = n: Number of folders to create - search = "grid": Use the search grid method. For randomized method, use "grid" Note: You can refer to the vignette to see the other arguments of the function.
您可以尝试使用默认参数运行模型,查看准确率得分。
注意:您将在整个教程中使用相同的控件。
# Define the control trControl <- trainControl(method = "cv", number = 10, search = "grid")
您将使用 caret 库来评估模型。该库有一个名为 train() 的函数,用于评估几乎所有的机器学习算法。换句话说,您可以使用此函数来训练其他算法。
基本语法是
train(formula, df, method = "rf", metric= "Accuracy", trControl = trainControl(), tuneGrid = NULL) argument - `formula`: Define the formula of the algorithm - `method`: Define which model to train. Note, at the end of the tutorial, there is a list of all the models that can be trained - `metric` = "Accuracy": Define how to select the optimal model - `trControl = trainControl()`: Define the control parameters - `tuneGrid = NULL`: Return a data frame with all the possible combination
让我们尝试使用默认值构建模型。
set.seed(1234) # Run the model rf_default <- train(survived~., data = data_train, method = "rf", metric = "Accuracy", trControl = trControl) # Print the results print(rf_default)
代码解释
- trainControl(method=”cv”, number=10, search=”grid”):使用 10 折的网格搜索评估模型
- train(…): 训练随机森林模型。使用准确率度量选择最佳模型。
输出
## Random Forest ## ## 836 samples ## 7 predictor ## 2 classes: 'No', 'Yes' ## ## No pre-processing ## Resampling: Cross-Validated (10 fold) ## Summary of sample sizes: 753, 752, 753, 752, 752, 752, ... ## Resampling results across tuning parameters: ## ## mtry Accuracy Kappa ## 2 0.7919248 0.5536486 ## 6 0.7811245 0.5391611 ## 10 0.7572002 0.4939620 ## ## Accuracy was used to select the optimal model using the largest value. ## The final value used for the model was mtry = 2.
该算法使用 500 棵树,并测试了 mtry 的三个不同值:2、6、10。
用于模型的最终值是 mtry = 2,准确率为 0.78。让我们尝试获得更高的分数。
步骤 2) 搜索最佳 mtry
您可以测试 mtry 从 1 到 10 的模型
set.seed(1234) tuneGrid <- expand.grid(.mtry = c(1: 10)) rf_mtry <- train(survived~., data = data_train, method = "rf", metric = "Accuracy", tuneGrid = tuneGrid, trControl = trControl, importance = TRUE, nodesize = 14, ntree = 300) print(rf_mtry)
代码解释
- tuneGrid <- expand.grid(.mtry=c(3:10)):用从 3:10 的值构建一个向量
用于模型的最终值是 mtry = 4。
输出
## Random Forest ## ## 836 samples ## 7 predictor ## 2 classes: 'No', 'Yes' ## ## No pre-processing ## Resampling: Cross-Validated (10 fold) ## Summary of sample sizes: 753, 752, 753, 752, 752, 752, ... ## Resampling results across tuning parameters: ## ## mtry Accuracy Kappa ## 1 0.7572576 0.4647368 ## 2 0.7979346 0.5662364 ## 3 0.8075158 0.5884815 ## 4 0.8110729 0.5970664 ## 5 0.8074727 0.5900030 ## 6 0.8099111 0.5949342 ## 7 0.8050918 0.5866415 ## 8 0.8050918 0.5855399 ## 9 0.8050631 0.5855035 ## 10 0.7978916 0.5707336 ## ## Accuracy was used to select the optimal model using the largest value. ## The final value used for the model was mtry = 4.
最佳 mtry 值存储在
rf_mtry$bestTune$mtry
您可以将其存储起来,并在需要调整其他参数时使用。
max(rf_mtry$results$Accuracy)
输出
## [1] 0.8110729
best_mtry <- rf_mtry$bestTune$mtry best_mtry
输出
## [1] 4
步骤 3) 搜索最佳 maxnodes
您需要创建一个循环来评估 maxnodes 的不同值。在下面的代码中,您将
- 创建列表
- 创建具有最佳参数 mtry 值的变量;必需
- 创建循环
- 存储当前 maxnode 值
- 总结结果
store_maxnode <- list() tuneGrid <- expand.grid(.mtry = best_mtry) for (maxnodes in c(5: 15)) { set.seed(1234) rf_maxnode <- train(survived~., data = data_train, method = "rf", metric = "Accuracy", tuneGrid = tuneGrid, trControl = trControl, importance = TRUE, nodesize = 14, maxnodes = maxnodes, ntree = 300) current_iteration <- toString(maxnodes) store_maxnode[[current_iteration]] <- rf_maxnode } results_mtry <- resamples(store_maxnode) summary(results_mtry)
代码解释
- store_maxnode <- list(): 模型结果将存储在此列表中
- expand.grid(.mtry=best_mtry): 使用最佳 mtry 值
- for (maxnodes in c(15:25)) { … }: 使用从 15 到 25 的 maxnodes 值计算模型。
- maxnodes=maxnodes: 每次迭代,maxnodes 等于 maxnodes 的当前值。即 15、16、17、…
- key <- toString(maxnodes): 将 maxnode 的值存储为字符串变量。
- store_maxnode[[key]] <- rf_maxnode: 将模型结果保存在列表中。
- resamples(store_maxnode): 整理模型结果
- summary(results_mtry): 打印所有组合的摘要。
输出
## ## Call: ## summary.resamples(object = results_mtry) ## ## Models: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ## Number of resamples: 10 ## ## Accuracy ## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 5 0.6785714 0.7529762 0.7903758 0.7799771 0.8168388 0.8433735 0 ## 6 0.6904762 0.7648810 0.7784710 0.7811962 0.8125000 0.8313253 0 ## 7 0.6904762 0.7619048 0.7738095 0.7788009 0.8102410 0.8333333 0 ## 8 0.6904762 0.7627295 0.7844234 0.7847820 0.8184524 0.8433735 0 ## 9 0.7261905 0.7747418 0.8083764 0.7955250 0.8258749 0.8333333 0 ## 10 0.6904762 0.7837780 0.7904475 0.7895869 0.8214286 0.8433735 0 ## 11 0.7023810 0.7791523 0.8024240 0.7943775 0.8184524 0.8433735 0 ## 12 0.7380952 0.7910929 0.8144005 0.8051205 0.8288511 0.8452381 0 ## 13 0.7142857 0.8005952 0.8192771 0.8075158 0.8403614 0.8452381 0 ## 14 0.7380952 0.7941050 0.8203528 0.8098967 0.8403614 0.8452381 0 ## 15 0.7142857 0.8000215 0.8203528 0.8075301 0.8378873 0.8554217 0 ## ## Kappa ## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 5 0.3297872 0.4640436 0.5459706 0.5270773 0.6068751 0.6717371 0 ## 6 0.3576471 0.4981484 0.5248805 0.5366310 0.6031287 0.6480921 0 ## 7 0.3576471 0.4927448 0.5192771 0.5297159 0.5996437 0.6508314 0 ## 8 0.3576471 0.4848320 0.5408159 0.5427127 0.6200253 0.6717371 0 ## 9 0.4236277 0.5074421 0.5859472 0.5601687 0.6228626 0.6480921 0 ## 10 0.3576471 0.5255698 0.5527057 0.5497490 0.6204819 0.6717371 0 ## 11 0.3794326 0.5235007 0.5783191 0.5600467 0.6126720 0.6717371 0 ## 12 0.4460432 0.5480930 0.5999072 0.5808134 0.6296780 0.6717371 0 ## 13 0.4014252 0.5725752 0.6087279 0.5875305 0.6576219 0.6678832 0 ## 14 0.4460432 0.5585005 0.6117973 0.5911995 0.6590982 0.6717371 0 ## 15 0.4014252 0.5689401 0.6117973 0.5867010 0.6507194 0.6955990 0
最后一个 maxnode 值具有最高的准确率。您可以尝试更高的值,看看是否能获得更高的分数。
store_maxnode <- list() tuneGrid <- expand.grid(.mtry = best_mtry) for (maxnodes in c(20: 30)) { set.seed(1234) rf_maxnode <- train(survived~., data = data_train, method = "rf", metric = "Accuracy", tuneGrid = tuneGrid, trControl = trControl, importance = TRUE, nodesize = 14, maxnodes = maxnodes, ntree = 300) key <- toString(maxnodes) store_maxnode[[key]] <- rf_maxnode } results_node <- resamples(store_maxnode) summary(results_node)
输出
## ## Call: ## summary.resamples(object = results_node) ## ## Models: 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ## Number of resamples: 10 ## ## Accuracy ## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 20 0.7142857 0.7821644 0.8144005 0.8075301 0.8447719 0.8571429 0 ## 21 0.7142857 0.8000215 0.8144005 0.8075014 0.8403614 0.8571429 0 ## 22 0.7023810 0.7941050 0.8263769 0.8099254 0.8328313 0.8690476 0 ## 23 0.7023810 0.7941050 0.8263769 0.8111302 0.8447719 0.8571429 0 ## 24 0.7142857 0.7946429 0.8313253 0.8135112 0.8417599 0.8690476 0 ## 25 0.7142857 0.7916667 0.8313253 0.8099398 0.8408635 0.8690476 0 ## 26 0.7142857 0.7941050 0.8203528 0.8123207 0.8528758 0.8571429 0 ## 27 0.7023810 0.8060456 0.8313253 0.8135112 0.8333333 0.8690476 0 ## 28 0.7261905 0.7941050 0.8203528 0.8111015 0.8328313 0.8690476 0 ## 29 0.7142857 0.7910929 0.8313253 0.8087063 0.8333333 0.8571429 0 ## 30 0.6785714 0.7910929 0.8263769 0.8063253 0.8403614 0.8690476 0 ## ## Kappa ## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 20 0.3956835 0.5316120 0.5961830 0.5854366 0.6661120 0.6955990 0 ## 21 0.3956835 0.5699332 0.5960343 0.5853247 0.6590982 0.6919315 0 ## 22 0.3735084 0.5560661 0.6221836 0.5914492 0.6422128 0.7189781 0 ## 23 0.3735084 0.5594228 0.6228827 0.5939786 0.6657372 0.6955990 0 ## 24 0.3956835 0.5600352 0.6337821 0.5992188 0.6604703 0.7189781 0 ## 25 0.3956835 0.5530760 0.6354875 0.5912239 0.6554912 0.7189781 0 ## 26 0.3956835 0.5589331 0.6136074 0.5969142 0.6822128 0.6955990 0 ## 27 0.3735084 0.5852459 0.6368425 0.5998148 0.6426088 0.7189781 0 ## 28 0.4290780 0.5589331 0.6154905 0.5946859 0.6356141 0.7189781 0 ## 29 0.4070588 0.5534173 0.6337821 0.5901173 0.6423101 0.6919315 0 ## 30 0.3297872 0.5534173 0.6202632 0.5843432 0.6590982 0.7189781 0
使用 maxnode 等于 22 的值获得最高准确率分数。
步骤 4) 搜索最佳 ntrees
现在您有了最佳的 mtry 和 maxnode 值,您可以调整树的数量。方法与 maxnode 完全相同。
store_maxtrees <- list() for (ntree in c(250, 300, 350, 400, 450, 500, 550, 600, 800, 1000, 2000)) { set.seed(5678) rf_maxtrees <- train(survived~., data = data_train, method = "rf", metric = "Accuracy", tuneGrid = tuneGrid, trControl = trControl, importance = TRUE, nodesize = 14, maxnodes = 24, ntree = ntree) key <- toString(ntree) store_maxtrees[[key]] <- rf_maxtrees } results_tree <- resamples(store_maxtrees) summary(results_tree)
输出
## ## Call: ## summary.resamples(object = results_tree) ## ## Models: 250, 300, 350, 400, 450, 500, 550, 600, 800, 1000, 2000 ## Number of resamples: 10 ## ## Accuracy ## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 250 0.7380952 0.7976190 0.8083764 0.8087010 0.8292683 0.8674699 0 ## 300 0.7500000 0.7886905 0.8024240 0.8027199 0.8203397 0.8452381 0 ## 350 0.7500000 0.7886905 0.8024240 0.8027056 0.8277623 0.8452381 0 ## 400 0.7500000 0.7886905 0.8083764 0.8051009 0.8292683 0.8452381 0 ## 450 0.7500000 0.7886905 0.8024240 0.8039104 0.8292683 0.8452381 0 ## 500 0.7619048 0.7886905 0.8024240 0.8062914 0.8292683 0.8571429 0 ## 550 0.7619048 0.7886905 0.8083764 0.8099062 0.8323171 0.8571429 0 ## 600 0.7619048 0.7886905 0.8083764 0.8099205 0.8323171 0.8674699 0 ## 800 0.7619048 0.7976190 0.8083764 0.8110820 0.8292683 0.8674699 0 ## 1000 0.7619048 0.7976190 0.8121510 0.8086723 0.8303571 0.8452381 0 ## 2000 0.7619048 0.7886905 0.8121510 0.8086723 0.8333333 0.8452381 0 ## ## Kappa ## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 250 0.4061697 0.5667400 0.5836013 0.5856103 0.6335363 0.7196807 0 ## 300 0.4302326 0.5449376 0.5780349 0.5723307 0.6130767 0.6710843 0 ## 350 0.4302326 0.5449376 0.5780349 0.5723185 0.6291592 0.6710843 0 ## 400 0.4302326 0.5482030 0.5836013 0.5774782 0.6335363 0.6710843 0 ## 450 0.4302326 0.5449376 0.5780349 0.5750587 0.6335363 0.6710843 0 ## 500 0.4601542 0.5449376 0.5780349 0.5804340 0.6335363 0.6949153 0 ## 550 0.4601542 0.5482030 0.5857118 0.5884507 0.6396872 0.6949153 0 ## 600 0.4601542 0.5482030 0.5857118 0.5884374 0.6396872 0.7196807 0 ## 800 0.4601542 0.5667400 0.5836013 0.5910088 0.6335363 0.7196807 0 ## 1000 0.4601542 0.5667400 0.5961590 0.5857446 0.6343666 0.6678832 0 ## 2000 0.4601542 0.5482030 0.5961590 0.5862151 0.6440678 0.6656337 0
您现在有了最终模型。您可以使用以下参数训练随机森林
- ntree =800: 将训练 800 棵树
- mtry=4: 每次迭代选择 4 个特征
- maxnodes = 24: 终端节点(叶子)中的最大节点数为 24
fit_rf <- train(survived~., data_train, method = "rf", metric = "Accuracy", tuneGrid = tuneGrid, trControl = trControl, importance = TRUE, nodesize = 14, ntree = 800, maxnodes = 24)
步骤 5) 评估模型
caret 库有一个用于进行预测的函数。
predict(model, newdata= df) argument - `model`: Define the model evaluated before. - `newdata`: Define the dataset to make prediction
prediction <-predict(fit_rf, data_test)
您可以使用预测来计算混淆矩阵并查看准确率得分
confusionMatrix(prediction, data_test$survived)
输出
## Confusion Matrix and Statistics ## ## Reference ## Prediction No Yes ## No 110 32 ## Yes 11 56 ## ## Accuracy : 0.7943 ## 95% CI : (0.733, 0.8469) ## No Information Rate : 0.5789 ## P-Value [Acc > NIR] : 3.959e-11 ## ## Kappa : 0.5638 ## Mcnemar's Test P-Value : 0.002289 ## ## Sensitivity : 0.9091 ## Specificity : 0.6364 ## Pos Pred Value : 0.7746 ## Neg Pred Value : 0.8358 ## Prevalence : 0.5789 ## Detection Rate : 0.5263 ## Detection Prevalence : 0.6794 ## Balanced Accuracy : 0.7727 ## ## 'Positive' Class : No ##
您获得了 0.7943% 的准确率,高于默认值
步骤 6) 可视化结果
最后,您可以使用 varImp() 函数查看特征重要性。似乎最重要的特征是性别和年龄。这并不奇怪,因为重要特征很可能出现在树的根部附近,而不太重要的特征通常出现在叶子附近。
varImpPlot(fit_rf)
输出
varImp(fit_rf) ## rf variable importance ## ## Importance ## sexmale 100.000 ## age 28.014 ## pclassMiddle 27.016 ## fare 21.557 ## pclassUpper 16.324 ## sibsp 11.246 ## parch 5.522 ## embarkedC 4.908 ## embarkedQ 1.420 ## embarkedS 0.000
摘要
我们可以用下表总结如何训练和评估随机森林
库 | 目标 | 函数 | 参数 |
---|---|---|---|
randomForest | 创建随机森林 | RandomForest() | formula, ntree=n, mtry=FALSE, maxnodes = NULL |
caret | 创建 K 折交叉验证 | trainControl() | method = “cv”, number = n, search =”grid” |
caret | 训练随机森林 | train() | formula, df, method = “rf”, metric= “Accuracy”, trControl = trainControl(), tuneGrid = NULL |
caret | 样本外预测 | predict | model, newdata= df |
caret | 混淆矩阵和统计数据 | confusionMatrix() | model, y test |
caret | 变量重要性 | cvarImp() | model |
附录
caret 中使用的模型列表
names>(getModelInfo())
输出
## [1] "ada" "AdaBag" "AdaBoost.M1" ## [4] "adaboost" "amdai" "ANFIS" ## [7] "avNNet" "awnb" "awtan" ## [10] "bag" "bagEarth" "bagEarthGCV" ## [13] "bagFDA" "bagFDAGCV" "bam" ## [16] "bartMachine" "bayesglm" "binda" ## [19] "blackboost" "blasso" "blassoAveraged" ## [22] "bridge" "brnn" "BstLm" ## [25] "bstSm" "bstTree" "C5.0" ## [28] "C5.0Cost" "C5.0Rules" "C5.0Tree" ## [31] "cforest" "chaid" "CSimca" ## [34] "ctree" "ctree2" "cubist" ## [37] "dda" "deepboost" "DENFIS" ## [40] "dnn" "dwdLinear" "dwdPoly" ## [43] "dwdRadial" "earth" "elm" ## [46] "enet" "evtree" "extraTrees" ## [49] "fda" "FH.GBML" "FIR.DM" ## [52] "foba" "FRBCS.CHI" "FRBCS.W" ## [55] "FS.HGD" "gam" "gamboost" ## [58] "gamLoess" "gamSpline" "gaussprLinear" ## [61] "gaussprPoly" "gaussprRadial" "gbm_h3o" ## [64] "gbm" "gcvEarth" "GFS.FR.MOGUL" ## [67] "GFS.GCCL" "GFS.LT.RS" "GFS.THRIFT" ## [70] "glm.nb" "glm" "glmboost" ## [73] "glmnet_h3o" "glmnet" "glmStepAIC" ## [76] "gpls" "hda" "hdda" ## [79] "hdrda" "HYFIS" "icr" ## [82] "J48" "JRip" "kernelpls" ## [85] "kknn" "knn" "krlsPoly" ## [88] "krlsRadial" "lars" "lars2" ## [91] "lasso" "lda" "lda2" ## [94] "leapBackward" "leapForward" "leapSeq" ## [97] "Linda" "lm" "lmStepAIC" ## [100] "LMT" "loclda" "logicBag" ## [103] "LogitBoost" "logreg" "lssvmLinear" ## [106] "lssvmPoly" "lssvmRadial" "lvq" ## [109] "M5" "M5Rules" "manb" ## [112] "mda" "Mlda" "mlp" ## [115] "mlpKerasDecay" "mlpKerasDecayCost" "mlpKerasDropout" ## [118] "mlpKerasDropoutCost" "mlpML" "mlpSGD" ## [121] "mlpWeightDecay" "mlpWeightDecayML" "monmlp" ## [124] "msaenet" "multinom" "mxnet" ## [127] "mxnetAdam" "naive_bayes" "nb" ## [130] "nbDiscrete" "nbSearch" "neuralnet" ## [133] "nnet" "nnls" "nodeHarvest" ## [136] "null" "OneR" "ordinalNet" ## [139] "ORFlog" "ORFpls" "ORFridge" ## [142] "ORFsvm" "ownn" "pam" ## [145] "parRF" "PART" "partDSA" ## [148] "pcaNNet" "pcr" "pda" ## [151] "pda2" "penalized" "PenalizedLDA" ## [154] "plr" "pls" "plsRglm" ## [157] "polr" "ppr" "PRIM" ## [160] "protoclass" "pythonKnnReg" "qda" ## [163] "QdaCov" "qrf" "qrnn" ## [166] "randomGLM" "ranger" "rbf" ## [169] "rbfDDA" "Rborist" "rda" ## [172] "regLogistic" "relaxo" "rf" ## [175] "rFerns" "RFlda" "rfRules" ## [178] "ridge" "rlda" "rlm" ## [181] "rmda" "rocc" "rotationForest" ## [184] "rotationForestCp" "rpart" "rpart1SE" ## [187] "rpart2" "rpartCost" "rpartScore" ## [190] "rqlasso" "rqnc" "RRF" ## [193] "RRFglobal" "rrlda" "RSimca" ## [196] "rvmLinear" "rvmPoly" "rvmRadial" ## [199] "SBC" "sda" "sdwd" ## [202] "simpls" "SLAVE" "slda" ## [205] "smda" "snn" "sparseLDA" ## [208] "spikeslab" "spls" "stepLDA" ## [211] "stepQDA" "superpc" "svmBoundrangeString"## [214] "svmExpoString" "svmLinear" "svmLinear2" ## [217] "svmLinear3" "svmLinearWeights" "svmLinearWeights2" ## [220] "svmPoly" "svmRadial" "svmRadialCost" ## [223] "svmRadialSigma" "svmRadialWeights" "svmSpectrumString" ## [226] "tan" "tanSearch" "treebag" ## [229] "vbmpRadial" "vglmAdjCat" "vglmContRatio" ## [232] "vglmCumulative" "widekernelpls" "WM" ## [235] "wsrf" "xgbLinear" "xgbTree" ## [238] "xyf"