

Learn VB.NET in 1 Day

By Krishna Rungta

Copyright 2019 - All Rights Reserved – Krishna Rungta

ALL RIGHTS RESERVED. No part of this publication may be reproduced or

transmitted in any form whatsoever, electronic, or mechanical, including

photocopying, recording, or by any informational storage or retrieval

system without express written, dated and signed permission from the

author.

Table Of Content

Chapter 1: What is VB.Net? Introduction, History, Features, Advantages,

Disadvantages

1. What is VB.Net?

2. History of VB.NET

3. VB.NET Features

4. Advantages of VB.NET

5. Disadvantages of VB.NET

Chapter 2: VB.Net Program Structure, Module, Classes: Hello World

Example

1. Modules

2. Hello World Program

3. Classes

4. Structures

5. Using Microsoft Visual Studio IDE

Chapter 3: VB.Net Data Types and Variable Declaration with DIM

1. What are Data Types?

2. Type Conversion Functions

3. Variable Declaration

4. Variable Initialization

5. Accepting User Values

6. Lvalues and Rvalues

Chapter 4: VB.Net Operators: Arithmetic, Comparison, Logical with

EXAMPLES

1. What is an operator?

2. Arithmetic Operators

3. Comparison Operators

4. Logical/Bitwise Operators

5. Bit Shift Operators

6. Assignment Operators

7. Miscellaneous Operators

Chapter 5: VB.Net Arrays: String, Dynamic with EXAMPLES

1. What is an Array?

2. How to Declare and Initialize an Array

3. Fixed-Size Arrays

4. Dynamic Arrays

5. Retrieving the Contents of an Array

6. Adding New Elements to an Array

7. Deleting an Array

8. The Split Function

9. The Join Function

Chapter 6: VB.NET Substring Method with EXAMPLE

1. What is a SubString?

2. Syntax of Substring

3. Examples

4. One Argument

5. Middle Characters

6. One Char

Chapter 7: For Each...Next, Exit, Continue Statement in VB.net with

EXAMPLE

1. What is For Each?

2. Syntax of For Each… Next

3. Examples

4. Nested For Loops

5. Exit For and Continue For

Chapter 8: Select...Case Statement in VB.Net with Example

1. What is a Select Case?

2. Syntax of Select Case

3. Examples

4. Case Sensitive: ToLower, ToUpper

Chapter 9: Try...Catch...Finally, Throws, User Defined exception in VB.Net

1. What is an Exception?

2. What is Exception Handling?

3. Syntax of Try/Catch

4. Example to Handle Exceptions

5. User-Defined Exceptions

6. Throwing Objects

Chapter 10: VB.Net ComboBox Control with EXAMPLE

1. What is Combobox Control?

2. Creating a Combobox

3. Adding Items to Combobox

4. Selecting Combobox Items

5. Retrieving Combobox Values

6. Removing Combobox Items

7. Binding DataSource

8. SelectedIndexChanged event

Chapter 11: VB.Net TEXTBOX Control Tutorial: Properties with Example

1. What is TextBox Control?

2. TextBox Properties

3. Textbox Events

4. How to Create a TextBox

5. Password character

6. Newline in TextBox

7. Retrieving Integer Values

8. ReadOnly TextBox

9. max length

Chapter 1: What is VB.Net?

Introduction, History, Features,

Advantages, Disadvantages

What is VB.Net?

VB.NET stands for Visual Basic.NET, and it is a computer programming

language developed by Microsoft. It was first released in 2002 to replace

Visual Basic 6. VB.NET is an object-oriented programming language. This

means that it supports the features of object-oriented programming which

include encapsulation, polymorphism, abstraction, and inheritance.

Visual Basic .ASP NET runs on the .NET framework, which means that it has

full access to the .NET libraries. It is a very productive tool for rapid creation

of a wide range of Web, Windows, Office, and Mobile applications that have

been built on the .NET framework.

The language was designed in such a way that it is easy to understand to

both novice and advanced programmers. Since VB.NET relies on the .NET

framework, programs written in the language run with much reliability and

scalability. With VB.NET, you can create applications that are fully object-

oriented, similar to the ones created in other languages like C++, Java, or

C#. Programs written in VB.NET can also interoperate well with programs

written in Visual C++, Visual C#, and Visual J#. VB.NET treats everything as

an object.

It is true that VB.NET is an evolved version of Visual Basic 6, but it's not

compatible with it. If you write your code in Visual Basic 6, you cannot

compile it under VB.NET.

History of VB.NET

VB.NET is a multi-paradigm programming language developed by

Microsoft on the .NET framework. It was launched in 2002 as a

successor to the Visual Basic language. This was the first version of

VB.NET (VB.NET 7.0) and it relied on .NET version 1.0.

In 2003, the second version of VB.NET, VB.NET 7.1, was released. This

one relied on .NET version 1.1. This version came with a number of

improvements including support for .NET Compact Framework and an

improved reliability and performance of the

.NET IDE. VB.NET 2003 was also made available in the academic edition

of Visual Studio.NET and distributed to various scholars from different

countries for free.

In 2005, VB.NET 8.0 was released. The .NET core portion was dropped

from its name so as to distinguish it from the classical Visual Basic

language. This version was named Visual Basic 2005. This version came

with many features since Microsoft wanted this

language to be used for rapid application developers. They also wanted

to make it different from C# language. Some of the features introduced

by this version of VB.NET included partial classes, generics, nullable

types, operator overloading, and unsigned integer support. This

version also saw the introduction of the IsNot operator.

In 2008, VB 9.0 was introduced. This was released together with

.NET 3.5. Some of the features added to this release of VB.NET included

anonymous types, true conditional operator, LINQ support, XML literals,

Lambda expressions, extension methods, and type inference.

In 2010, Microsoft released VB 2010 (code 10.0). They wanted to use a

Dynamic Language Runtime for this release, but they opted for co-

evolution strategy shared between VB.NET and C# to bring these

languages closer to each other.

In 2012, VB 2012 (code 11.0) was release together with .NET 4.5. Its

features included call hierarchy, iterators, caller data, asynchronous

programming with "await" and "async" statements and the "Global"

keyword in the "namespace" statements.

In 2015, VB 2015 (code 14.0) was released alongside Visual Studio 2015.

The "?." operator was introduced to do inline null checks. A string

interpolation feature was also introduced to help in formatting strings

inline.

In 2017, VB 2017 (code 15.0) was introduced alongside Visual Studio

2017. A better way of organizing source code in just a single action

was introduced.

VB.NET Features

VB.NET comes loaded with numerous features that have made it a

popular programming language amongst programmers worldwide. These

features include the following:

VB.NET is not case sensitive like other languages such as C++ and Java.

It is an object-oriented programming language. It treats everything as

an object.

Automatic code formatting, XML designer, improved object browser etc.

Garbage collection is automated.

Support for Boolean conditions for decision making.

Simple multithreading, allowing your apps to deal with multiple tasks

simultaneously.

Simple generics.

A standard library.

Events management.

References. You should reference an external object that is to be used in

a VB.NET application.

Attributes, which are tags for providing additional information regarding

elements that have been defined within a program.

Windows Forms- you can inherit your form from an already existing

form.

Advantages of VB.NET

The following are the pros/benefits you will enjoy for coding in VB.NET:

Your code will be formatted automatically.

You will use object-oriented constructs to create an enterprise- class

code.

You can create web applications with modern features like performance

counters, event logs, and file system.

You can create your web forms with much ease through the visual forms

designer. You will also enjoy drag and drop capability to replace any

elements that you may need.

You can connect your applications to other applications created in

languages that run on the .NET framework.

You will enjoy features like docking, automatic control anchoring, and

in-place menu editor all good for developing web applications.

Disadvantages of VB.NET

Below are some of the drawbacks/cons associated with VB.NET:

VB.NET cannot handle pointers directly. This is a significant

disadvantage since pointers are much necessary for programming.

Any additional coding will lead to many CPU cycles, requiring more

processing time. Your application will become slow.

VB.NET is easy to learn. This has led to a large talent pool. Hence, it may

be challenging to secure a job as a VB.NET programmer.

Summary:

VB.NET was developed by Microsoft. It is

an object-oriented language.

The language is not case sensitive.

VB.NET programs run on the .NET framework.

In VB.NET, the garbage collection process has been automated.

The language provides windows forms from which you can inherit your

own forms.

VB.NET allows you to enjoy the drag and drop feature when creating a

user interface.

Imports System

Module Module1

'Prints Hello Guru99

Sub Main()

Console.WriteLine("Hello Guru99")

Console.ReadKey()

Chapter 2: VB.Net Program

Structure, Module, Classes: Hello

World Example

Modules

A VB.NET program consists of the following:

Namespace declaration

One or more procedures

A class or module

Variables

The Main procedure

Comments

Statements & Expressions

Hello World Program

Step 1) Create a new console application.

Step 2) Add the following code:

Step 3) Click the Start button from the toolbar to run it. It should print the

following on the console:

Let us discuss the various parts of the above program:

Explanation of Code:

1. This is called the namespace declaration. What we are doing is that we

are including a namespace with the name System into our

programming structure. After that, we will be able to access all the

methods that have been defined in that namespace without getting an

error.

End Sub

End Module

2. This is called a module declaration. Here, we have declared a module

named Module1. VB.NET is an object-oriented language. Hence we

must have a class module in every program. It is inside this module

that you will be able to define the data and methods to be used by

your program.

3. This is a comment. To mark it as a comment, we added a single quote

(') to the beginning of the sentence. The VB.NET compiler will not

process this part. The purpose of comments is to improve the

readability of the code. Use them to explain the meaning of various

statements in your code. Anyone reading through your code will find it

easy to understand.

4. A VB.NET module or class can have more than one procedures. It is

inside procedures where you should define your executable code. This

means that the procedure will define the class behavior. A procedure

can be a Function, Sub, Get, Set, AddHandler, Operator,

RemoveHandler, or RaiseEvent. In this line, we defined the Main sub-

procedure. This marks the entry point in all VB.NET programs. It

defines what the module will do when it is executed.

5. This is where we have specified the behavior of the primary method.

The WriteLine method belongs to the Console class, and it is defined

inside the System namespace. Remember this was imported into the

code. This statement makes the program print the text Hello Guru99

on the console when executed.

6. This line will prevent the screen from closing or exiting soon after the

program has been executed. The screen will pause and wait for the

user to perform an action to close it.

7. Closing the main sub-procedure.

8. Ending the module.

[<attributelist>] [accessmodifier] _

Class name

[Inherits classname]

[statements]

End Class

Classes

In VB.NET, we use classes to define a blueprint for a data type. It does not

mean that a class definition is a data definition, but it describes what an

object of that class will be made of and the operations that we can perform

on such an object.

An object is an instance of a class. The class members are the methods and

variables defined within the class.

To define a class, we use the Class keyword, which should be followed by

the name of the class, the class body, and the End Class statement. This is

described in the following syntax:

Here,

The attributeList denotes a list of attributes that are to be applied to

the class.

The accessModifier is the access level of the defined class. It is an

optional parameter and can take values like Public, Protected, Protected

Friend, Friend, and Private.

The Inherits denotes any parent class that it inherits.

Following is example code to create a class in VB.NET -

Step 1) Create a new console application.

Step 2) Add the following code:

Step 3) Run the code by clicking the Start button from the toolbar. You

should get the following window:

We have used the following code:

Imports System

Module Module1

Class Figure

Public length As Double

Public breadth As Double

End Class

Sub Main()

Dim Rectangle As Figure = New Figure()

Dim area As Double = 0.0

Rectangle.length = 8.0

Rectangle.breadth = 7.0

area = Rectangle.length * Rectangle.breadth

Console.WriteLine("Area of Rectangle is : {0}", area)

Console.ReadKey()

End Sub

End Module

Explanation of Code:

1. Creating a module named Module1.

2. Creating a class named Figure.

3. Creating a class member named length of type Double. Its access level

has been set to public meaning that it will be accessed publicly.

4. Creating a class member named breadth of type Double. Its access level

has been set to public meaning that it will be accessed publicly.

5. Ending the class.

6. Creating the main sub-procedure.

7. Creating an object named Rectangle. This object will be of type

figure, meaning that it will be capable of accessing all the

Module Module1

Structure Struct

Public x As Integer

Public y As Integer

End Structure

Sub Main()

Dim st As New Struct

members defined inside the Figure class.

8. Defining a variable named area of type Double and initializing its value

to 0.0.

9. Accessing the length property defined in the Figure class and

initializing its value to 8.0.

10. Accessing the breadth property defined in the Figure class and

initialize its value to 7.0.

11. Calculating the area of the rectangle by multiplying the values of

length and breadth. The result of this calculation will be assigned to

the area variable.

12. Printing some text and the area of the rectangle on the console.

13. Pausing the console waiting for a user to take action to close it.

14. Ending the sub-procedure.

15. Ending the class.

Structures

A structure is a user-defined data type. Structures provide us with a way of

packaging data of different types together. A structure is declared using the

structure keyword. Example to create a structure in VB.NET:

Step 1) Create a new console application.

Step 2) Add the following code:

Step 3) Run the code by clicking the Start button from the toolbar. You

should get the following window:

We have used the following code:

st.x = 10

st.y = 20

Dim sum As Integer = st.x + st.y

Console.WriteLine("The result is {0}", sum)

Console.ReadKey()

End Sub

End Module

Explanation of Code:

1. Creating a module named Module1.

2. Creating a structure named Struct.

3. Creating a variable x of type integer. Its access level has been set to

Public to make it publicly accessible.

4. Creating a variable y of type integer. Its access level has been set to

Public to make it publicly accessible.

5. End of the structure.

6. Creating the main sub-procedure.

7. Creating an object named st of type Struct. This means that it will be

capable of accessing all the properties defined within the structure

named Struct.

8. Accessing the variable x defined within the structure Struct and

initializing its value to 10.

9. Accessing the variable y defined within the structure Struct and

initializing its value to 20.

10. Defining the variable sum and initializing its value to the sum of the

values of the above two variables.

11. Printing some text and the result of the above operation on the

console.

12. Pausing the console window waiting for a user to take action to

close it.

13. End of the main sub-procedure.

14. End of the module.

https://guru99.thrivecart.com/vb-net-ebook/

