

Learn Software Testing in 1 Day

By Krishna Rungta

Copyright 2019 - All Rights Reserved – Krishna Rungta

ALL RIGHTS RESERVED. No part of this publication may be reproduced or

transmitted in any form whatsoever, electronic, or mechanical, including

photocopying, recording, or by any informational storage or retrieval

system without express written, dated and signed permission from the

author.

Table Of Content

Section 1- Introduction

1. What is Software Testing? Introduction, Definition, Basics &

Types

2. 7 Software Testing Principles: Learn with Examples

3. What is V Model in Software Testing? Learn with SDLC & STLC

Example

4. STLC - Software Testing Life Cycle Phases & Entry, Exit Criteria

5. How to Create a Test Plan (with Example)

6. Manual Testing Tutorial for Beginners: Concepts, Types, Tool

7. AUTOMATION TESTING Tutorial: What is, Process, Benefits & Tools

Section 2- Creating Test

1. What is Test Scenario? Template with Examples

2. How to Write Test Cases: Sample Template with Examples

3. Software Testing Techniques with Test Case Design Examples

4. What is Requirements Traceability Matrix (RTM)? Example

Template

5. What is Static Testing? What is a Testing Review?

6. Test Environment for Software Testing

7. Test Data Generation: What is, How to, Example, Tools

8. Defect Management Process in Software Testing (Bug Report

Template)

9. Defect/Bug Life Cycle in Software Testing

Section 3: Testing Types

1. Types of Software Testing: 100 Examples of Different Testing

Types

2. What is WHITE Box Testing? Techniques, Example, Types & Tools

3. What is BLACK Box Testing? Techniques, Example & Types

4. Unit Testing Tutorial: What is, Types, Tools, EXAMPLE

5. Integration Testing: What is, Types, Top Down & Bottom Up

Example

6. What is System Testing? Types & Definition with Example

7. What is Regression Testing? Definition, Test Cases (Example)

8. Sanity Testing Vs Smoke Testing: Introduction & Differences

9. Performance Testing Tutorial: What is, Types, Metrics & Example

10. Load Testing Tutorial: What is? How to? (with Examples)

11. Accessibility Testing Tutorial: What is, Tools & Examples

12. What is STRESS Testing in Software Testing? Tools, Types,

Examples

13. What is User Acceptance Testing (UAT)? with Examples

14. Backend Testing Tutorial: What is, Tools & Examples

15. Protocol Testing Tutorial: L2 & L3

16. Web Service Testing: A Beginner's Tutorial

17. API Testing Tutorial: Learn in 10 minutes!

Section 4: Agile Testing

1. What is Agile Testing? Process, Strategy, Test Plan, Life Cycle

Example

2. Scrum Testing Methodology Tutorial: What is, Process, Artifacts,

Sprint

Section 5: Testing Different Domains

1. Banking Domain Application Testing: Sample Test Cases

2. eCommerce Testing: How to Test an E-Commerce Website

3. Testing Insurance Domain Applications with Sample Test Cases

4. Payment Gateway Testing Tutorial with Example Test Cases

5. Testing Retail Point Of Sale(POS) Systems: Example Test Cases

6. Testing Telecom Domain with Sample OSS/BSS Test cases

7. ETL Testing or Data Warehouse Testing Tutorial

8. Database(Data) Testing Tutorial with Sample TestCases

Section 1- introduction

What is Software Testing? Introduction,

Definition, Basics & Types

What is Software Testing?

Software testing is defined as an activity to check whether the actual results

match the expected results and to ensure that the software system is Defect

free. It involves execution of a software component or system component to

evaluate one or more properties of interest.

Software testing also helps to identify errors, gaps or missing requirements in

contrary to the actual requirements. It can be either done manually or using

automated tools. Some prefer saying Software testing as a White Box and

Black Box Testing.

In simple terms, Software Testing means Verification of Application Under

Test (AUT).

This tutorial introduces testing software to the audience and justifies it's

importance.

Why is Software Testing Important?

Testing is important because software bugs could be expensive or even

dangerous. Software bugs can potentially cause monetary and human

loss, and history is full of such examples.

In April 2015, Bloomberg terminal in London crashed due to software

glitch affected more than 300,000 traders on financial markets. It forced

the government to postpone a 3bn pound debt sale.

Nissan cars have to recall over 1 million cars from the market due to

software failure in the airbag sensory detectors. There has been

reported two accident due to this software failure.

Starbucks was forced to close about 60 percent of stores in the

U.S and Canada due to software failure in its POS system. At one point

store served coffee for free as they unable to process the transaction.

Some of the Amazon’s third party retailers saw their product price is

reduced to 1p due to a software glitch. They were left with heavy

losses.

Vulnerability in Window 10. This bug enables users to escape from

security sandboxes through a flaw in the win32k system.

In 2015 fighter plane F-35 fell victim to a software bug, making it unable

to detect targets correctly.

China Airlines Airbus A300 crashed due to a software bug on April 26,

1994, killing 264 innocent live

In 1985, Canada's Therac-25 radiation therapy machine malfunctioned

due to software bug and delivered lethal radiation doses to patients,

leaving 3 people dead and critically injuring 3 others.

In April of 1999, a software bug caused the failure of a $1.2 billion

military satellite launch, the costliest accident in history

In may of 1996, a software bug caused the bank accounts of 823

customers of a major U.S. bank to be credited with 920 million US

dollars.

Types of Software Testing

Typically Testing is classified into three categories.

Functional Testing

Non-Functional Testing or Performance Testing

Maintenance (Regression and Maintenance)

Testing Category Types of Testing

Functional Testing

Unit Testing Integration

Testing Smoke

UAT (User Acceptance Testing) Localization

Globalization

Interoperability So

on

Non-Functional Testing

Performance

Endurance

Load Volume

Scalability

Usability

So on

Maintenance

Regression

Maintenance

This is not the complete list as there are more than 150 types of testing

types and still adding. Also, note that not all testing types are applicable to

all projects but depend on the nature & scope of the project.

7 Software Testing Principles: Learn with

Examples

This tutorial introduces the seven basic principles of Software Testing every

professional Software tester and QA professional should know.

Background

It is important that you achieve optimum test results while conducting

software testing without deviating from the goal. But how you determine

that you are following the right strategy for testing? For that, you need to

stick to some basic testing principles. Here are the common seven testing

principles that are widely practiced in the software industry.

To understand this, consider a scenario where you are moving a file from

folder A to Folder B.

Think of all the possible ways you can test this.

Apart from the usual scenarios, you can also test the following conditions

Trying to move the file when it is Open

You do not have the security rights to paste the file in Folder B Folder B

is on a shared drive and storage capacity is full.

Folder B already has a file with the same name, in fact, the list is endless

Or suppose you have 15 input fields to test, each having 5 possible

values, the number of combinations to be tested would be 5^15

If you were to test the entire possible combinations project

EXECUTION TIME & COSTS would rise exponentially. We need certain

principles and strategies to optimize the testing effort

Here are the 7 Principles:

1) Exhaustive testing is not possible

Yes! Exhaustive testing is not possible. Instead, we need the optimal amount

of testing based on the risk assessment of the application.

And the million dollar question is, how do you determine this risk? To

answer this let's do an exercise

In your opinion, Which operation is most likely to cause your Operating

system to fail?

I am sure most of you would have guessed, Opening 10 different application

all at the same time.

So if you were testing this Operating system, you would realize that defects

are likely to be found in multi-tasking activity and need to be tested

thoroughly which brings us to our next principle Defect Clustering

2) Defect Clustering

Defect Clustering which states that a small number of modules contain most

of the defects detected. This is the application of the Pareto Principle to

software testing: approximately 80% of the problems are found in 20% of the

modules.

By experience, you can identify such risky modules. But this approach has its

own problems

If the same tests are repeated over and over again, eventually the same test

cases will no longer find new bugs.

3) Pesticide Paradox

Repetitive use of the same pesticide mix to eradicate insects during farming

will over time lead to the insects developing resistance to the pesticide

Thereby ineffective of pesticides on insects. The same applies to software

testing. If the same set of repetitive tests are conducted, the method will be

useless for discovering new defects.

To overcome this, the test cases need to be regularly reviewed & revised,

adding new & different test cases to help find more defects.

Testers cannot simply depend on existing test techniques. He must look out

continually to improve the existing methods to make testing more effective.

But even after all this sweat & hard work in testing, you can never claim

your product is bug-free. To drive home this point, let's see this video of the

public launch of Windows 98

You think a company like MICROSOFT would not have tested their OS

thoroughly & would risk their reputation just to see their OS crashing during

its public launch!

4) Testing shows a presence of defects

Hence, testing principle states that - Testing talks about the presence of

defects and don’t talk about the absence of defects. i.e. Software Testing

reduces the probability of undiscovered defects remaining in the software

but even if no defects are found, it is not a proof of correctness.

But what if, you work extra hard, taking all precautions & make your software

product 99% bug-free. And the software does not meet the needs &

requirements of the clients.

This leads us to our next principle, which states that- Absence of Error

5) Absence of Error - fallacy

It is possible that software which is 99% bug-free is still unusable. This can

be the case if the system is tested thoroughly for the wrong requirement.

Software testing is not mere finding defects, but also to check that software

addresses the business needs. The absence of Error is a Fallacy i.e. Finding

and fixing defects does not help if the system build is unusable and does not

fulfill the user's needs & requirements.

To solve this problem, the next principle of testing states that Early Testing

6) Early Testing

Early Testing - Testing should start as early as possible in the Software

Development Life Cycle. So that any defects in the requirements or design

phase are captured in early stages. It is much cheaper to fix a

Defect in the early stages of testing. But how early one should start testing? It

is recommended that you start finding the bug the moment the requirements

are defined. More on this principle in a later training tutorial.

7) Testing is context dependent

Testing is context dependent which basically means that the way you test an

e-commerce site will be different from the way you test a commercial off the

shelf application. All the developed software’s are not identical. You might

use a different approach, methodologies, techniques, and types of testing

depending upon the application type. For instance testing, any POS system at

a retail store will be different than testing an ATM machine.

Summary of the Seven Testing Principles

Principle 1 Testing shows presence of defects

Principle 2 Exhaustive testing is impossible

Principle 3 Early Testing

Principle 4 Defect Clustering

Principle 5 Pesticide Paradox

Principle 6 Testing is context dependent

Principle 7 Absence of errors - fallacy

Myth: "Principles are just for reference. I will not

use them in practice ."

This is so very untrue. Test Principles will help you create an effective Test

Strategy and draft error catching test cases.

But learning testing principles is just like learning to drive for the first time.

Initially, while you learn to drive, you pay attention to each and everything

like gear shifts, speed, clutch handling, etc. But with experience, you just

focus on driving the rest comes naturally. Such that you even hold

conversations with other passengers in the car.

Same is true for testing principles. Experienced testers have internalized

these principles to a level that they apply them even without thinking.

Hence the myth that the principles are not used in practice is simply not

true.

What is V Model in Software Testing? Learn

with SDLC & STLC Example

Before we learn the V model, let's understand -

What is SDLC?

SDLC is Software Development Life Cycle. It is the sequence of activities

carried out by Developers to design and develop high-quality software.

Though SDLC uses the term ‘Development’, it does not involve just coding

tasks done by developers but also incorporates the tasks

contributed by testers and stakeholders. In

SDLC, test cases are created.

What is STLC?

STLC is Software Testing Life Cycle. It consists of a series of activities

carried out by Testers methodologically to test your software product.

Though STLC uses the term “testing” it does not involve just testers, in some

instances, they have to involve developers as well.

In STLC Test cases are executed.

What is the Waterfall Model?

Waterfall model is a sequential model divided into different phases of

software development activity. Each stage is designed for performing the

specific activity during the SDLC phase. Testing phase in waterfall model

starts only after implementation of the system is done.

Testing is done within the SDLC.

What is V- Model?

V- model is an extension of the waterfall model. It is pronounced as the

"vee" model. Unlike the waterfall model, In V-model, there is a

corresponding testing phase for each software development phase.

Testing in V-model is done in parallel to SDLC stage.

Testing is done as a subproject of SDLC.

EXAMPLE To Understand the V Model

Suppose, you are assigned a task, to develop a custom software for a

client. Now, irrespective of your technical background, try and make an

educated guess about the sequence of steps you will follow, to achieve the

task.

The correct sequence would be.

Different phases of the
Software Development
Cycle

Activities performed in each stage

Requirement Gathering

stage

Gather as much information as possible about the details &

specifications of the desired software from the client. This is nothing

but the Requirements gathering stage.

Design Stage

Plan the programming language like Java, PHP, .net; database like

Oracle, MySQL, etc. Which would be suited for the project, also some

high-level functions & architecture.

Build Stage

After the design stage, it is build stage, that is nothing but actually

code the software

Test Stage

Next, you test the software to verify that it is built as per the

specifications are given by the client.

Deployment stage

Deploy the application in the respective environment

Maintenance stage

Once your system is ready to use, you may require to change the

code later on as per customer request

All these levels constitute the waterfall method of the software development

lifecycle.

Problem with the Waterfall Model

As you may observe, that testing in the model starts only after

implementation is done.

But if you are working in the large project, where the systems are complex,

it's easy to miss out the key details in the requirements phase itself. In such

cases, an entirely wrong product will be delivered to the client and you

might have to start afresh with the project OR if you manage to note the

requirements correctly but make serious mistakes in design and architecture

of your software you will have to redesign the entire software to correct the

error.

Assessments of thousands of projects have shown that defects introduced

during requirements & design make up close to half of the total number of

defects.

Also, the costs of fixing a defect increase across the development lifecycle.

The earlier in life cycle a defect is detected, the cheaper it is to fix it. As they

say, "A stitch in time saves nine."

Solution: The V Model

To address this concern, the V model of testing was developed where for

every phase, in the Development life cycle there is a corresponding Testing

phase

The left side of the model is Software Development Life Cycle -

SDLC

The right side of the model is Software Test Life Cycle - STLC

The entire figure looks like a V, hence the name V - model

Apart from the V model, there are iterative development models, where

development is carried in phases, with each phase adding a functionality

to the software. Each phase comprises its independent set of development

and testing activities.

Good examples of Development lifecycles following iterative method are

Rapid Application Development, Agile Development

Conclusion

There are numerous development life cycle models. Development model

selected for a project depends on the aims and goals of that project.

Testing is not a stand-alone activity, and it has to adapt the

development model chosen for the project.

In any model, testing should be performed at all levels i.e. right from

requirements until maintenance.

STLC - Software Testing Life Cycle Phases &

Entry, Exit Criteria

What is Software Testing Life Cycle (STLC)?

Software Testing Life Cycle (STLC) is defined as a sequence of activities

conducted to perform Software Testing.

Contrary to popular belief, Software Testing is not a just a single activity. It

consists of a series of activities carried out methodologically to help certify

your software product.

Different Phases of the STLC Model

STLC Diagram

Below are the phases of STLC:

Requirement Analysis

Test Planning

Test case development

Test Environment setup

Test Execution

Test Cycle closure

Each of these stages has a definite Entry and Exit criteria, Activities &

Deliverables associated with it.

What is Entry and Exit Criteria?

Entry Criteria: Entry Criteria gives the prerequisite items that must be

completed before testing can begin.

Exit Criteria: Exit Criteria defines the items that must be completed

before testing can be concluded

You have Entry and Exit Criteria for all levels in the Software Testing Life Cycle

(STLC)

In an Ideal world, you will not enter the next stage until the exit criteria for

the previous stage is met. But practically this is not always possible. So for

this tutorial, we will focus on activities and deliverables for the different

stages in STLC life cycle. Let's look into them in detail.

Requirement Analysis

During this phase, test team studies the requirements from a testing

point of view to identify the testable requirements.

The QA team may interact with various stakeholders (Client, Business

Analyst, Technical Leads, System Architects etc) to understand the

requirements in detail.

Requirements could be either Functional (defining what the software must

do) or Non Functional (defining system performance /security availability)

Automation feasibility for the given testing project is also done in this stage.

Activities

Identify types of tests to be performed.

Gather details about testing priorities and focus. Prepare

Requirement Traceability Matrix (RTM).

Identify test environment details where testing is supposed to be carried

out.

Automation feasibility analysis (if required).

Deliverables

RTM

Automation feasibility report. (if applicable)

Test Planning

Typically, in this stage, a Senior QA manager will determine effort and cost

estimates for the project and would prepare and finalize the Test Plan. In this

phase, Test Strategy is also determined.

Activities

Preparation of test plan/strategy document for various types of testing

Test tool selection Test

effort estimation

Resource planning and determining roles and responsibilities. Training

requirement

Deliverables

Test plan /strategy document.

Effort estimation document.

Test Case Development

This phase involves the creation, verification and rework of test cases & test

scripts. Test data, is identified/created and is reviewed and then reworked

as well.

Activities

Create test cases, automation scripts (if applicable)

Review and baseline test cases and scripts

Create test data (If Test Environment is available)

Deliverables

Test cases/scripts

Test data

Test Environment Setup
Test environment decides the software and hardware conditions under

which a work product is tested. Test environment set-up is one of the critical

aspects of testing process and can be done in parallel with Test Case

Development Stage. Test team may not be involved in this activity if the

customer/development team provides the test environment in which case

the test team is required to do a readiness check (smoke testing) of the

given environment.

Activities

Understand the required architecture, environment set-up and prepare

hardware and software requirement list for the Test Environment.

Setup test Environment and test data

Perform smoke test on the build

Deliverables

Environment ready with test data set up

Smoke Test Results.

Test Execution

During this phase, the testers will carry out the testing based on the test

plans and the test cases prepared. Bugs will be reported back to the

development team for correction and retesting will be performed.

Activities

Execute tests as per plan

Document test results, and log defects for failed cases

Map defects to test cases in RTM

Retest the Defect fixes Track

the defects to closure

Deliverables

Completed RTM with the execution status

Test cases updated with results

Defect reports

Test Cycle Closure

Testing team will meet, discuss and analyze testing artifacts to identify

strategies that have to be implemented in the future, taking lessons from

the current test cycle. The idea is to remove the process bottlenecks for

future test cycles and share best practices for any similar projects in the

future.

Activities

Evaluate cycle completion criteria based on Time, Test coverage,

Cost,Software, Critical Business Objectives, Quality

Prepare test metrics based on the above parameters.

Document the learning out of the project

Prepare Test closure report

Qualitative and quantitative reporting of quality of the work product to

the customer.

Test result analysis to find out the defect distribution by type and

severity.

Deliverables

Test Closure report

Test metrics

https://guru99.thrivecart.com/software-testing-ebook/

