

Learn MongoDB in 1 Day

By Krishna Rungta

Copyright 2019 - All Rights Reserved – Krishna Rungta

ALL RIGHTS RESERVED. No part of this publication may be reproduced

or transmitted in any form whatsoever, electronic, or mechanical,

including photocopying, recording, or by any informational storage or

retrieval system without express written, dated and signed permission

from the author.

Table Of Content

Chapter 1: What is MongoDB? Introduction, Architecture, Features &

Example

1. MongoDB Features

2. MongoDB Example

3. Key Components of MongoDB Architecture

4. Why Use MongoDB?

5. Data Modelling in MongoDB

6. Difference between MongoDB & RDBMS

Chapter 2: NoSQL Tutorial: Learn NoSQL Features, Types, What is,

Advantages

1. What is NoSQL?

2. Why NoSQL?

3. Brief History of NoSQL Databases

4. Features of NoSQL

5. Types of NoSQL Databases

6. Query Mechanism tools for NoSQL

7. What is the CAP Theorem?

8. Eventual Consistency

9. Advantages of NoSQL

10. Disadvantages of NoSQL

Chapter 3: How to Download & Install MongoDB on Windows

1. Download & Install MongoDB on Windows

2. Hello World MongoDB: JavaScript Driver

3. Install Python Driver

4. Install Ruby Driver

5. Install MongoDB Compass- MongoDB Management Tool

6. MongoDB Configuration, Import, and Export

7. Configuring MongoDB server with configuration file

Chapter 4: Install MongoDB in Cloud: AWS, Google, Azure

Chapter 5: How to Create Database & Collection in MongoDB

1. Creating a database using “use” command

2. Creating a Collection/Table using insert()

3. Adding documents using insert() command

Chapter 6: Add MongoDB Array using insert() with Example

Chapter 7: Mongodb Primary Key: Example to set _id field with

ObjectId()

Chapter 8: MongoDB Query Document using find() with Example

Chapter 9: MongoDB Cursor Tutorial: Learn with EXAMPLE

Chapter 10: MongoDB order with Sort() & Limit() Query with

Examples

1. What is Query Modifications?

2. MongoDB Limit Query Results

3. MongoDB Sort by Descending Order

Chapter 11: MongoDB Count() & Remove() Functions with Examples

Chapter 12: MongoDB Update() Document with Example

1. Basic document updates

2. Updating Multiple Values

Chapter 13: MongoDB Security, Backup & Monitoring

1. MongoDB Security Overview

2. Mongodb Backup Procedures

3. Mongodb Monitoring

4. MongoDB Indexing and Performance Considerations

Chapter 14: How to Create User & add Role in MongoDB

1. MongoDB Create User for Single Database

2. Managing users

Chapter 15: Configure MongoDB with Kerberos

Authentication: X.509 Certificates

1. MongoDB Authentication using x.509 Certificates

2. Mongodb Authentication with Kerberos

Chapter 16: MongoDB Replica Set Tutorial: Step by Step Replication

Example

1. Replica Set: Adding the First Member using rs.initiate()

2. Replica Set: Adding a Secondary using rs.add()

3. Replica Set: Reconfiguring or Removing using rs.remove()

4. Troubleshooting Replica Sets

Chapter 17: MongoDB Sharding: Step by Step Tutorial with Example

1. How to Implement Sharding

2. Step by Step Sharding Cluster Example

Chapter 18: MongoDB Indexing Tutorial - createIndex(),

dropindex() Example

1. Understanding Impact of Indexes

2. How to Create Indexes: createIndex()

3. How to Find Indexes: getindexes()

4. How to Drop Indexes: dropindex()

Chapter 19: MongoDB Regular Expression (Regex) with Examples

1. Using $regex operator for Pattern matching

2. Pattern Matching with $options

3. Pattern matching without the regex operator

4. Fetching last ‘n’ documents from a collection

Chapter 1: What is MongoDB?

Introduction, Architecture, Features &

Example

What is MongoDB?

MongoDB is a document-oriented NoSQL database used for high volume

data storage. MongoDB is a database which came into light around the

mid-2000s. It falls under the category of a NoSQL database.

MongoDB Features

1. Each database contains collections which in turn contains

documents. Each document can be different with a varying number

of fields. The size and content of each document can be different

from each other.

2. The document structure is more in line with how developers

construct their classes and objects in their respective programming

languages. Developers will often say that their classes are not rows

and columns but have a clear structure with key-value pairs.

3. As seen in the introduction with NoSQL databases, the rows (or

documents as called in MongoDB) doesn’t need to have a schema

defined beforehand. Instead, the fields can be created on the fly.

4. The data model available within MongoDB allows you to represent

hierarchical relationships, to store arrays, and other more complex

structures more easily.

5. Scalability – The MongoDB environments are very scalable.

Companies across the world have defined clusters with some of

them running 100+ nodes with around millions of documents

within the database

MongoDB Example

The below example shows how a document can be modeled in

MongoDB.

1. The _id field is added by MongoDB to uniquely identify the

document in the collection.

2. What you can note is that the Order Data (OrderID, Product, and

Quantity) which in RDBMS will normally be stored in a separate table,

while in MongoDB it is actually stored as an embedded document in

the collection itself. This is one of the key differences in how data is

modeled in MongoDB.

Key Components of MongoDB Architecture

Below are a few of the common terms used in MongoDB

1. _id – This is a field required in every MongoDB document. The

_id field represents a unique value in the MongoDB document. The

_id field is like the document’s primary key. If you create a

new document without an _id field, MongoDB will automatically create

the field. So for example, if we see the example of the above customer

table, Mongo DB will add a 24 digit unique identifier to each document in

the collection.

_Id CustomerID CustomerName OrderID

563479cc8a8a4246bd27d784 11 Guru99 111

563479cc7a8a4246bd47d784 22 Trevor Smith 222

563479cc9a8a4246bd57d784 33 Nicole 333

2. Collection – This is a grouping of MongoDB documents. A collection is

the equivalent of a table which is created in any other RDMS such as

Oracle or MS SQL. A collection exists within a single database. As seen

from the introduction collections don’t enforce any sort of structure.

3. Cursor – This is a pointer to the result set of a query. Clients can iterate

through a cursor to retrieve results.

4. Database – This is a container for collections like in RDMS wherein it

is a container for tables. Each database gets its own set of files on the

file system. A MongoDB server can store multiple databases.

5. Document - A record in a MongoDB collection is basically called a

document. The document, in turn, will consist of field name and values.

6. Field - A name-value pair in a document. A document has zero or more

fields. Fields are analogous to columns in relational databases.

The following diagram shows an example of Fields with Key value pairs.

So in the example below CustomerID and 11 is one of the key value

pair’s defined in the document.

7. JSON – This is known as JavaScript Object Notation. This is a human-

readable, plain text format for expressing structured data. JSON is

currently supported in many programming languages.

Just a quick note on the key difference between the _id field and a

normal collection field. The _id field is used to uniquely identify the

documents in a collection and is automatically added by MongoDB when

the collection is created.

Why Use MongoDB?

Below are the few of the reasons as to why one should start using

MongoDB

1. Document-oriented – Since MongoDB is a NoSQL type database,

instead of having data in a relational type format, it stores the data in

documents. This makes MongoDB very flexible and adaptable to real

business world situation and requirements.

2. Ad hoc queries - MongoDB supports searching by field, range queries,

and regular expression searches. Queries can be made to return

specific fields within documents.

3. Indexing - Indexes can be created to improve the performance of

searches within MongoDB. Any field in a MongoDB document can be

indexed.

4. Replication - MongoDB can provide high availability with replica

sets. A replica set consists of two or more mongo DB instances. Each

replica set member may act in the role of the primary or secondary

replica at any time. The primary replica is the main server which

interacts with the client and performs all the read/write operations.

The Secondary replicas maintain a copy of the data of the primary

using built-in replication. When a primary replica fails, the replica set

automatically switches over to the secondary and then it becomes the

primary server.

5. Load balancing - MongoDB uses the concept of sharding to scale

horizontally by splitting data across multiple MongoDB instances.

MongoDB can run over multiple servers, balancing the load and/or

duplicating data to keep the system up and running in case of hardware

failure.

Data Modelling in MongoDB

As we have seen from the Introduction section, the data in MongoDB has a

flexible schema. Unlike in SQL databases, where you must have a table’s

schema declared before inserting data, MongoDB’s collections do not

enforce document structure. This sort of flexibility is what makes MongoDB

so powerful.

When modeling data in Mongo, keep the following things in mind

1. What are the needs of the application – Look at the business needs

of the application and see what data and the type of data needed

for the application. Based on this, ensure that the structure of the

document is decided accordingly.

2. What are data retrieval patterns – If you foresee a heavy query

usage then consider the use of indexes in your data model to

improve the efficiency of queries.

3. Are frequent insert’s, updates and removals happening in the

database – Reconsider the use of indexes or incorporate sharding if

required in your data modeling design to improve the efficiency of

your overall MongoDB environment.

Difference between MongoDB & RDBMS

Below are some of the key term differences between MongoDB and

RDBMS

RDBMS MongoDB Difference

Table

Collection

In RDBMS, the table contains the columns and rows which are used to store
the data whereas, in MongoDB, this same structure is known as a collection.
The collection contains documents which in turn contains Fields, which in
turn are key-value pairs.

Row Document
In RDBMS, the row represents a single, implicitly structured data item in a
table. In MongoDB, the data is stored in documents.

Column Field
In RDBMS, the column denotes a set of data values. These in MongoDB are
known as Fields.

Joins

Embedded

documents

In RDBMS, data is sometimes spread across various tables and in order to
show a complete view of all data, a join is sometimes formed across tables to
get the data. In MongoDB, the data is normally stored in a single collection,
but separated by using Embedded documents. So there is no concept of joins
in MongoDB.

Apart from the terms differences, a few other differences are shown

below

1. Relational databases are known for enforcing data integrity. This is

not an explicit requirement in MongoDB.

2. RDBMS requires that data be normalized first so that it can prevent

orphan records and duplicates Normalizing data then has the

requirement of more tables, which will then result in more table joins,

thus requiring more keys and indexes.

As databases start to grow, performance can start becoming an issue.

Again this is not an explicit requirement in MongoDB. MongoDB is

flexible and does not need the data to be normalized first.

Chapter 2: NoSQL Tutorial: Learn NoSQL

Features, Types, What is, Advantages

What is NoSQL?

NoSQL is a non-relational DMS, that does not require a fixed schema, avoids

joins, and is easy to scale. NoSQL database is used for distributed data stores

with humongous data storage needs. NoSQL is used for Big data and real-

time web apps. For example, companies like Twitter, Facebook, Google that

collect terabytes of user data every single day.

NoSQL database stands for “Not Only SQL” or “Not SQL.” Though a better

term would NoREL NoSQL caught on. Carl Strozz introduced the NoSQL

concept in 1998.

Traditional RDBMS uses SQL syntax to store and retrieve data for further

insights. Instead, a NoSQL database system encompasses a wide range of

database technologies that can store structured, semi- structured,

unstructured and polymorphic data.

Why NoSQL?

The concept of NoSQL databases became popular with Internet giants like

Google, Facebook, Amazon, etc. who deal with huge volumes of data. The

system response time becomes slow when you use RDBMS for massive

volumes of data.

To resolve this problem, we could “scale up” our systems by upgrading our

existing hardware. This process is expensive.

The alternative for this issue is to distribute database load on multiple hosts

whenever the load increases. This method is known as “scaling out.”

NoSQL database is non-relational, so it scales out better than relational

databases as they are designed with web applications in mind.

Brief History of NoSQL Databases

1998- Carlo Strozzi use the term NoSQL for his lightweight, open- source

relational database

2000- Graph database Neo4j is launched

2004- Google BigTable is launched

2005- CouchDB is launched

2007- The research paper on Amazon Dynamo is released

2008- Facebooks open sources the Cassandra project 2009-

The term NoSQL was reintroduced

Features of NoSQL

Non-relational

NoSQL databases never follow the relational model

Never provide tables with flat fixed-column records

Work with self-contained aggregates or BLOBs

Doesn’t require object-relational mapping and data normalization No

complex features like query languages, query planners,

referential integrity joins, ACID

Schema-free

NoSQL databases are either schema-free or have relaxed schemas Do

not require any sort of definition of the schema of the data Offers

heterogeneous structures of data in the same domain

NoSQL is Schema-Free

Simple API

Offers easy to use interfaces for storage and querying data

provided

APIs allow low-level data manipulation & selection methods Text-

based protocols mostly used with HTTP REST with JSON Mostly used

no standard based query language

Web-enabled databases running as internet-facing services

Distributed

Multiple NoSQL databases can be executed in a distributed

fashion

Offers auto-scaling and fail-over capabilities

Often ACID concept can be sacrificed for scalability and throughput

Mostly no synchronous replication between distributed nodes

Asynchronous Multi-Master Replication, peer-to-peer, HDFS

Replication

Only providing eventual consistency

Shared Nothing Architecture. This enables less coordination and

higher distribution.

NoSQL is Shared Nothing.

Types of NoSQL Databases

There are mainly four categories of NoSQL databases. Each of these

categories has its unique attributes and limitations. No specific database

is better to solve all problems. You should select a database

based on your product needs. Let

see all of them:

Key-value Pair Based

Column-oriented Graph

Graphs based Document-

oriented

Key Value Pair Based

Data is stored in key/value pairs. It is designed in such a way to handle lots

of data and heavy load.

Key-value pair storage databases store data as a hash table where each key

is unique, and the value can be a JSON, BLOB(Binary Large Objects), string,

etc.

For example, a key-value pair may contain a key like “Website”

associated with a value like “Guru99”.

It is one of the most basic types of NoSQL databases. This kind of NoSQL

database is used as a collection, dictionaries, associative arrays, etc. Key

value stores help the developer to store schema-less data. They work best

for shopping cart contents.

Redis, Dynamo, Riak are some examples of key-value store DataBases.

They are all based on Amazon’s Dynamo paper.

Column-based

Column-oriented databases work on columns and are based on BigTable

paper by Google. Every column is treated separately. Values of single

column databases are stored contiguously.

Column based NoSQL database

They deliver high performance on aggregation queries like SUM, COUNT,

AVG, MIN etc. as the data is readily available in a column.

Column-based NoSQL databases are widely used to manage data

warehouses, business intelligence, CRM, Library card catalogs,

HBase, Cassandra, HBase, Hypertable are examples of column based

database.

Document-Oriented:

Document-Oriented NoSQL DB stores and retrieves data as a key value pair

but the value part is stored as a document. The document is stored in JSON

or XML formats. The value is understood by the DB and can

be queried.

Relational Vs. Document

In this diagram on your left you can see we have rows and columns, and in

the right, we have a document database which has a similar structure to

JSON. Now for the relational database, you have to know what columns you

have and so on. However, for a document database, you have data store

like JSON object. You do not require to define which make it flexible.

The document type is mostly used for CMS systems, blogging platforms,

real-time analytics & e-commerce applications. It should not use for

complex transactions which require multiple operations or queries against

varying aggregate structures.

Amazon SimpleDB, CouchDB, MongoDB, Riak, Lotus Notes,

MongoDB, are popular Document originated DBMS systems.

Graph-Based

A graph type database stores entities as well the relations amongst those

entities. The entity is stored as a node with the relationship as edges. An

edge gives a relationship between nodes. Every node and edge has a

unique identifier.

Compared to a relational database where tables are loosely connected, a

Graph database is a multi-relational in nature. Traversing relationship is fast

as they are already captured into the DB, and there is no need to calculate

them.

Graph base database mostly used for social networks, logistics, spatial data.

Neo4J, Infinite Graph, OrientDB, FlockDB are some popular graph- based

databases.

Query Mechanism tools for NoSQL

The most common data retrieval mechanism is the REST-based

retrieval of a value based on its key/ID with GET resource

Document store Database offers more difficult queries as they

understand the value in a key-value pair. For example, CouchDB

allows defining views with MapReduce

What is the CAP Theorem?

CAP theorem is also called brewer’s theorem. It states that is impossible

for a distributed data store to offer more than two out of three

guarantees

1. Consistency

2. Availability

3. Partition Tolerance

Consistency:

The data should remain consistent even after the execution of an operation.

This means once data is written, any future read request should contain

that data. For example, after updating the order status, all the clients should

be able to see the same data.

Availability:

The database should always be available and responsive. It should not have

any downtime.

Partition Tolerance:

Partition Tolerance means that the system should continue to function even

if the communication among the servers is not stable. For example, the

servers can be partitioned into multiple groups which may not communicate

with each other. Here, if part of the database is unavailable, other parts are

always unaffected.

Eventual Consistency

The term “eventual consistency” means to have copies of data on multiple

machines to get high availability and scalability. Thus, changes made to

any data item on one machine has to be propagated to other replicas.

Data replication may not be instantaneous as some copies will be updated

immediately while others in due course of time. These copies may be

mutually, but in due course of time, they become consistent.

Hence, the name eventual consistency.

BASE: Basically Available, Soft state, Eventual consistency

Basically, available means DB is available all the time as per CAP

theorem

Soft state means even without an input; the system state may

change

Eventual consistency means that the system will become

consistent over time

Advantages of NoSQL

Can be used as Primary or Analytic Data Source Big

Data Capability

No Single Point of Failure Easy

Replication

No Need for Separate Caching Layer

It provides fast performance and horizontal scalability.

Can handle structured, semi-structured, and unstructured data with

equal effect

Object-oriented programming which is easy to use and flexible NoSQL

databases don’t need a dedicated high-performance server Support

Key Developer Languages and Platforms

Simple to implement than using RDBMS

It can serve as the primary data source for online applications.

Handles big data which manages data velocity, variety, volume, and

complexity

Excels at distributed database and multi-data center operations

Eliminates the need for a specific caching layer to store data Offers a

flexible schema design which can easily be altered without downtime or

service disruption

Disadvantages of NoSQL

No standardization rules

Limited query capabilities

RDBMS databases and tools are comparatively mature

It does not offer any traditional database capabilities, like

consistency when multiple transactions are performed

simultaneously.

When the volume of data increases it is difficult to maintain

unique values as keys become difficult

Doesn’t work as well with relational data The

learning curve is stiff for new developers

Open source options so not so popular for enterprises.

Summary

NoSQL is a non-relational DMS, that does not require a fixed

schema, avoids joins, and is easy to scale

The concept of NoSQL databases beccame popular with Internet

giants like Google, Facebook, Amazon, etc. who deal with huge

volumes of data

In the year 1998- Carlo Strozzi use the term NoSQL for his lightweight,

open-source relational database

NoSQL databases never follow the relational model it is either

schema-free or has relaxed schemas

Four types of NoSQL Database are 1).Key-value Pair Based

2).Column-oriented Graph 3).Graphs based 4).Document-

oriented

NOSQL can handle structured, semi-structured, and unstructured data

with equal effect

CAP theorem consists of three words Consistency, Availability, and

Partition Tolerance

BASE stands for Basically Available, Soft state, Eventual

consistency

The term “eventual consistency” means to have copies of data on

multiple machines to get high availability and scalability NOSQL offer

limited query capabilities

https://guru99.thrivecart.com/mongodb-ebook/

