
 

Learn C# in 1 Day 

By Krishna Rungta 

 
 
 
 
 
 
 

 
Copyright 2019 - All Rights Reserved – Krishna Rungta 

 
ALL RIGHTS RESERVED. No part of this publication may be reproduced or 

transmitted in any form whatsoever, electronic, or mechanical, including 

photocopying, recording, or by any informational storage or retrieval 

system without express written, dated and signed permission from the 

author. 



 

Table Of Content 

Chapter 1: What is .NET Framework? Complete Architecture Tutorial 

 

1. What is Microsoft .Net Framework? 

2. .Net Framework Architecture 

3. .NET Components 

4. .Net Framework Design Principle 
 

Chapter 2: C# and .Net Version History 
 

1. .Net Framework Version History 

2. C# Version History 
 

Chapter 3: How to Download and Install Visual Studio for C# 

 

1. How to Download and Install Visual Studio 

2. Visual Studio Key Features 
 

Chapter 4: C# Hello World: First Console Application Program 

 

Chapter 5: C# Data Types with Example 
 

Chapter 6: C# Enum(Enumeration) with Example 
 

Chapter 7: C# Variables & Operators with Example 



1. C# Variables 

2. C# Operators 
 

Chapter 8: C# IF, Switch, For, While Loop Statements Tutorial [Examples] 

 

1. Flow Control and conditional statements 

2. If statement 

3. Switch statement 

4. While loop 

5. For loop 
 

Chapter 9: C# Array Tutorial: Create, Declare, Initialize 
 

Chapter 10: C# Class & Object Tutorial with Examples 
 

1. What is Class and Object? 

2. How to Create a Class and Object 

3. Fields and methods 
 

Chapter 11: C# Access Modifiers(Specifiers) with Example 
 

1. Access Modifiers 

2. C# Constructor 
 

Chapter 12: C# Inheritance & Polymorphism with Examples 
 

1. What is Inheritance in C#? 

2. What is Polymorphism in C#? 
 

Chapter 13: C# Abstract Classes Tutorial with Example 



Chapter 14: C# Interface Tutorial with Example 
 

Chapter 15: C# Collections Tutorial with Examples 
 

Chapter 16: C# ArrayList Tutorial with Examples 
 

Chapter 17: C# Stack with Example 
 

Chapter 18: C# Queue with Examples 
 

1. What is Queue in C#? 

2. C# Queue Dequeue 
 

Chapter 19: C# Hashtable with Examples 
 

Chapter 20: C# Windows Forms Application Tutorial with Example 

 

1. Windows Forms Basics 

2. C# Hello World 

3. Adding Controls to a form 

4. C# Event Handling for Controls 

5. Tree and PictureBox Control 
 

Chapter 21: C# Database Connection Tutorial with Example 
 

1. Fundamentals of Database connectivity 

2. How to connect C# to Database 

3. Access data with the SqlDataReader 

4. C# Insert Into Database 

5. C# Update Database 



6. Deleting Records 

7. Connecting Controls to Data 

8. C# DataGridView 
 

Chapter 22: C# File I/O Handling Operations [Examples] 
 

1. Basics I/O Commands 

2. File.Exists 

3. File.ReadAlllines 

4. File.ReadAllText 

5. File.Copy 

6. File.Delete 
 

Chapter 23: C# Stream Tutorial: StreamReader, StreamWriter with 

Example 

 

1. Stream Reader 

2. Stream Writer 
 

Chapter 24: C# Serialization & Deserialization with Example 
 

Chapter 25: Coded UI Test Automation Framework Tutorial 



 

Chapter 1: What is .NET Framework? Complete 
Architecture Tutorial 

 

What is Microsoft .Net Framework? 

The .Net framework is a software development platform developed by 

Microsoft. The framework was meant to create applications, which would 

run on the Windows Platform. The first version of the .Net framework was 

released in the year 2002. 

The version was called .Net framework 1.0. The .Net framework has come a 

long way since then, and the current version is 4.7.1. 

The .Net framework can be used to create both - Form-based and Web-

based applications. Web services can also be developed using the .Net 

framework. 

The framework also supports various programming languages such as Visual 

Basic and C#. So developers can choose and select the language to develop 

the required application. In this chapter, you will learn some basics of the 

.Net framework. 

 

.Net Framework Architecture 

The basic architecture of the .Net framework is as shown below. 



 
 

.net framework architecture diagram 

 

.NET Components 

The architecture of the .Net framework is based on the following key components; 

 

1. Common Language Runtime 
 

The "Common Language Infrastructure" or CLI is a platform on which the 

.Net programs are executed. 

The CLI has the following key features: 
 

Exception Handling - Exceptions are errors which occur when the application is 

executed. 

Examples of exceptions are: 



If an application tries to open a file on the local machine, but the 

file is not present. 

If the application tries to fetch some records from a database, but 

the connection to the database is not valid. 

Garbage Collection - Garbage collection is the process of removing unwanted 

resources when they are no longer required. 

Examples of garbage collection are 
 

A File handle which is no longer required. If the application has 

finished all operations on a file, then the file handle may no 

longer be required. 

The database connection is no longer required. If the application 

has finished all operations on a database, then the database 

connection may no longer be required. 

Working with Various programming languages – 
 

As noted in an earlier section, a developer can develop an application in a 

variety of .Net programming languages. 

1. Language - The first level is the programming language itself, the most 

common ones are VB.Net and C#. 

2. Compiler – There is a compiler which will be separate for each 

programming language. So underlying the VB.Net language, there will 

be a separate VB.Net compiler. Similarly, for C#, you will have another 

compiler. 

3. Common Language Interpreter – This is the final layer in .Net which 

would be used to run a .net program developed in any programming 

language. So the subsequent compiler will send the program to the CLI 

layer to run the .Net application. 



 

 

2. Class Library 
 

The .NET Framework includes a set of standard class libraries. A class library 

is a collection of methods and functions that can be used for the core 

purpose. 

For example, there is a class library with methods to handle all file- level 

operations. So there is a method which can be used to read the text from 

a file. Similarly, there is a method to write text to a file. 

Most of the methods are split into either the System.* or Microsoft.* 

namespaces. (The asterisk * just means a reference to all of the methods 

that fall under the System or Microsoft namespace) 

A namespace is a logical separation of methods. We will learn these 



namespaces more in detail in the subsequent chapters. 

 

3. Languages 
 

The types of applications that can be built in the .Net framework is 

classified broadly into the following categories. 
 

WinForms – This is used for developing Forms-based applications, 

which would run on an end user machine. Notepad is an example of a 

client-based application. 

ASP.Net – This is used for developing web-based applications, which 

are made to run on any browser such as Internet Explorer, Chrome or 

Firefox. 

The Web application would be processed on a server, which 

would have Internet Information Services Installed. 

Internet Information Services or IIS is a Microsoft component 

which is used to execute an Asp.Net application. The result of the 

execution is then sent to the client machines, and the output is 

shown in the browser. 

ADO.Net – This technology is used to develop applications to interact 

with Databases such as Oracle or Microsoft SQL Server. 
 

Microsoft always ensures that .Net frameworks are in compliance with all 

the supported Windows operating systems. 

 

.Net Framework Design Principle 

The following design principles of the .Net framework is what makes it very 

relevant to create .Net based applications. 

1. Interoperability - The .Net framework provides a lot of backward 



support. Suppose if you had an application built on an older version of 

the .Net framework, say 2.0. And if you tried to run the same 

application on a machine which had the higher version of the .Net 

framework, say 3.5. The application would still work. 

This is because with every release, Microsoft ensures that older framework 

versions gel well with the latest version. 

2. Portability- Applications built on the .Net framework can be made to 

work on any Windows platform. And now in recent times, Microsoft is 

also envisioning to make Microsoft products work on other platforms, 

such as iOS and Linux. 

3. Security - The .NET Framework has a good security mechanism. The 

inbuilt security mechanism helps in both validation and verification of 

applications. Every application can explicitly define their security 

mechanism. Each security mechanism is used to grant the user access 

to the code or to the running program. 

4. Memory management - The Common Language runtime does all the 

work or memory management. The .Net framework has all the 

capability to see those resources, which are not used by a running 

program. It would then release those resources accordingly. This is 

done via a program called the "Garbage Collector" which runs as part 

of the .Net framework. 

The garbage collector runs at regular intervals and keeps on checking 

which system resources are not utilized, and frees them accordingly. 

5. Simplified deployment - The .Net framework also have tools, 

which can be used to package applications built on the .Net 

framework. These packages can then be distributed to client 

machines. The packages would then automatically install the 

application. 



Summary 
 

.Net is a programming language developed by Microsoft. It was 

designed to build applications which could run on the Windows 

platform. 

The .Net programming language can be used to develop Forms based 

applications, Web based applications, and Web services. Developers 

can choose from a variety of programming languages available on the 

.Net platform. The most common ones are VB.Net and C#. 



 

Chapter 2: C# and .Net Version History 

.Net Framework Version History 

The first version of the .Net framework was released in the year 2002. The 

version was called .Net framework 1.0. The .Net framework has come a long 

way since then, and the current version is 4.7.1. 

Below is the table of .Net framework versions, which have been released 

with their release dates. Every version has relevant changes to the 

framework. 

For example, in framework 3.5 and onwards a key framework called the 

Entity framework was released. This framework is used to change the 

approach in which the applications are developed while working with 

databases. 

 

Version number CLR version Release date 

1.0 1.0 2002-02-13 

1.1 1.1 2003-04-24 

2.0 2.0 2005-11-07 

3.0 2.0 2006-11-06 

3.5 2.0 2007-11-19 

4.0 4 2010-04-12 

4.5 4 2012-08-15 

4.5.1 4 2013-10-17 

4.5.2 4 2014-05-05 

4.6 4 2015-07-20 
   



4.6.1 4 2015-11-17 

4.6.2 4 2016-08-02 

4.7 4 2017-04-05 

4.7.1 4 2017-10-17 
 

The biggest advantage of the .Net framework is that it supports Windows 

platform. Almost everyone works with Windows machines. 

Microsoft always ensures that .Net frameworks are in compliance with all 

the supported Windows operating systems. 

 

C# Version History 
 
 

Version 
.NET 

Framework 
Visual Studio Important Features 

C# 1.0 
.NET Framework 
1.0/1.1 

Visual Studio 

.NET 2002 
First release of C# 

 
 
 

C# 2.0 

 
 

 
.NET Framework 

2.0 

 
 

 
Visual Studio 

2005 

 

Generics Partial 

types 

Anonymous methods 

Nullable types Iterators 

Covariance and contravariance 

 
 
 

C# 3.0 

 
 

 
.NET Framework 

3.0\3.5 

 
 

 
Visual Studio 

2008 

 

Auto-implemented 

properties Anonymous 

types Query 

expressions Lambda 

expression Expression 

trees Extension 

methods 

    

Dynamic binding 

Named/optional arguments 



C# 4.0 .NET Framework 4.0 Visual Studio 

2010 

Generic covariant and 

contravariant  Embedded 

interop types 

 
C# 5.0 

 

.NET Framework 4.5 
 

Visual Studio 

2012/2013 

 

Asynchronous members Caller 

info attributes 

 
 
 
 

C# 6.0 

 
 
 

 
.NET Framework 4.6 

 
 
 

 
Visual Studio 

2013/2015 

 

Static imports 

Exception filters 

Property initializers 

Expression bodied 

members 

Null propagator String 

interpolation nameof 

operator Dictionary 

initializer 

 
 
 

 
C# 7.0 

 
 
 

 
.NET Core 

 
 
 

Visual Studio 

2017 

 

Improved performance and 

productivity 

Azure Support AI 

Support 

Game development 

Cross platform 

Mobile App Development 

Window App Development 
 
 

 

 
 
 
 
 
 
 

 
 

https://guru99.thrivecart.com/c-sharp-ebook/

