
https://www.guru99.com/

1

Learn Design and
Analysis of Algorithms

in 1 Day

By Krishna Rungta

Copyright 2022 - All Rights Reserved – Krishna Rungta

ALL RIGHTS RESERVED. No part of this publication

may be reproduced or transmitted in any form

whatsoever, electronic, or mechanical, including

photocopying, recording, or by any informational storage

or retrieval system without express written, dated and

signed permission from the author.

https://www.guru99.com/

2

Table Of Content

Chapter 1: Greedy Algorithm with Example:

What is, Method and Approach

1. What is a Greedy Algorithm?

2. History of Greedy Algorithms

3. Greedy Strategies and Decisions

4. Characteristics of the Greedy Approach

5. Why use the Greedy Approach?

6. How to Solve the activity selection problem

7. Architecture of the Greedy approach

8. Disadvantages of Greedy Algorithms

Chapter 2: Circular Linked List: Advantages and

Disadvantages

1. What is a Circular Linked List?

2. Basic Operations in Circular Linked lists

3. Insertion Operation

4. Deletion Operation

5. Traversal of a Circular Linked List

6. Advantages of Circular Linked List

7. Disadvantages of Circular Linked List

8. Singly Linked List as a Circular Linked List

9. Applications of the Circular Linked List

Chapter 3: Array in Data Structure: What is,

Arrays Operations [Examples]

1. What are Arrays?

https://www.guru99.com/

3

2. Concept of Array

3. Why do we need arrays?

4. Creating an Array in Python

5. Ways to Declare an Array in Python

6. Array Operations

7. Creating an Array in C++

8. Array Operations in C++

9. Array Operations in Java

Chapter 4: B TREE in Data Structure: Search,

Insert, Delete Operation Example

1. What is a B Tree?

2. Why use B-Tree

3. History of B Tree

4. Search Operation

5. Insert Operation

6. Delete Operation

Chapter 5: B+ TREE : Search, Insert and Delete

Operations Example

1. What is a B+ Tree?

2. Rules for B+ Tree

3. Why use B+ Tree

4. B+ Tree vs. B Tree

5. Search Operation

6. Insert Operation

7. Delete Operation

Chapter 6: Breadth First Search (BFS) Algorithm

with EXAMPLE

https://www.guru99.com/

4

1. What is BFS Algorithm (Breadth-First Search)?

2. What is Graph traversals?

3. The architecture of BFS algorithm

4. Why do we need BFS Algorithm?

5. How does BFS Algorithm Work?

6. Example BFS Algorithm

7. Rules of BFS Algorithm

8. Applications of BFS Algorithm

Chapter 7: Binary Search Tree (BST) with

Example

1. What is a Binary Search Tree?

2. Attributes of Binary Search Tree

3. Why do we need a Binary Search Tree?

4. Types of Binary Trees

5. How Binary Search Tree Works?

6. Important Terms

Chapter 8: Binary Search Algorithm with

EXAMPLE

1. What is Search?

2. What is Binary Search?

3. How Binary Search Works?

4. Example Binary Search

5. Why Do We Need Binary Search?

Chapter 9: Linear Search: Python, C++ Example

1. What is Searching Algorithm?

2. What is Linear Search?

3. What does Linear Search Function do?

https://www.guru99.com/

5

4. How does Linear Search work?

5. Pseudo Code for Sequential Search Algorithm

6. C++ Code Example Linear Search

7. Python Code Example Linear Search

8. Complexity Analysis of Linear Search Algorithm

9. How to improve Linear Search Algorithm

10. Application of Linear Search Algorithm

Chapter 10: Bubble Sort Algorithm with Python

using List Example

1. What is a Bubble Sort?

2. Implementing the Bubble Sort Algorithm

3. Optimized Bubble Sort Algorithm

4. Visual Representation

5. Python Examples

6. Code Explanation

7. Bubble sort advantages

8. Bubble sort Disadvantages

9. Complexity Analysis of Bubble Sort

Chapter 11: Selection Sort: Algorithm explained

with Python Code Example

1. What is Selection Sort?

2. How does selection sort work?

3. Problem Definition

4. Solution (Algorithm)

5. Visual Representation

6. Selection Sort Program using Python 3

7. Code Explanation

8. Time Complexity Of Selection Sort

9. When to use selection sort?

https://www.guru99.com/

6

10. Advantages of Selection Sort

11. Disadvantages of Selection Sort

Chapter 12: Hash Table in Data Structure:

Python Example

1. What is Hashing?

2. What is a Hash Table?

3. Hash functions

4. Qualities of a good hash function

5. Collision

6. Hash table operations

7. Hash Table Implementation with Python Example

8. Hash Table Code Explanation

9. Python Dictionary Example

10. Complexity Analysis

11. Real-world Applications

12. Advantages of hash tables

13. Disadvantages of hash tables

Chapter 13: Tree Traversals (Inorder, Preorder,

Postorder): C,Python, C++ Examples

1. What is Tree Traversal?

2. Types of Tree Traversal

3. Breadth-First Traversal

4. Inorder Traversal Bianry Tree

5. Post-Order Traversal

6. Preorder Traversal

7. Implementation in Python:

8. Implementation in C:

9. Implementation of C++ (Using std:queue for level

order):

https://www.guru99.com/

7

Chapter 14: Binary Tree in Data Structure

(EXAMPLE)

1. What is a Binary Tree?

2. What are the Differences Between Binary Tree and

Binary Search Tree?

3. Example of Binary Search Trees

4. Types of Binary Tree:

5. Implementation of Binary Tree in C and C++:

6. Implementation of Binary Tree in Python

7. Application of Binary Tree:

Chapter 15: Combination Algorithm: Print all

possible combinations of r |C,C++,Python

1. What is the Combination?

2. The time complexity analysis for Combination

3. METHOD-1: Fixed element with recursion

4. Method 2 (Include and Exclude every element):

5. Handling Duplicate Combinations

6. Using a dictionary or unordered map to track

duplicate combinations

Chapter 16: Longest Common Subsequence:

Python, C++ Example

1. What is Longest Common Subsequence?

2. Naive Method

3. Optimal Substructure

4. Recursive Method of Longest Comm Sequence

5. Dynamic Programming method of Longest Common

Subsequence (LCS)

https://www.guru99.com/

8

Chapter 17: Dijisktra’s Algorithm: C++, Python

Code Example

1. What is the shortest path or shortest distance?

2. How Dijkstra’s Algorithm Works

3. Difference Between Dijkstra and BFS, DFS

4. 2D grid demonstration of how BFS works

5. Example of Dijkstra’s Algorithm

6. C++ implementation Dijkstra’s Algorithm

7. Python implementation Dijkstra’s Algorithm

8. Application of Dijkstra Algorithm

9. Limitation of Dijkstra’s Algorithm

https://www.guru99.com/

9

Chapter 1: Greedy
Algorithm with Example:

What is, Method and

Approach

What is a Greedy Algorithm?

In Greedy Algorithm a set of resources are recursively

divided based on the maximum, immediate availability of that

resource at any given stage of execution. To solve a problem

based on the greedy approach, there are two stages

1. Scanning the list of items

2. Optimization

These stages are covered parallelly in this Greedy algorithm

tutorial, on course of division of the array.

To understand the greedy approach, you will need to have a

working knowledge of recursion and context switching. This

helps you to understand how to trace the code. You can define

the greedy paradigm in terms of your own necessary and

sufficient statements. Two conditions define the greedy

paradigm.

Each stepwise solution must structure a problem towards

its best-accepted solution.

It is sufficient if the structuring of the problem can halt in

a finite number of greedy steps.

With the theorizing continued, let us describe the history

associated with the Greedy search approach.

https://www.guru99.com/

10

History of Greedy Algorithms

Here is an important landmark of greedy algorithms:

Greedy algorithms were conceptualized for many graph

walk algorithms in the 1950S.

Esdger Djikstra conceptualized the algorithm to generate

minimal spanning trees. He aimed to shorten the span of

routes within the Dutch capital, Amsterdam.

In the same decade, Prim and Kruskal achieved

optimization strategies that were based on minimizing

path costs along weighed routes.

In the ’70s, American researchers, Cormen, Rivest, and

Stein proposed a recursive substructuring of greedy

solutions in their classical introduction to algorithms

book.

The Greedy search paradigm was registered as a different

type of optimization strategy in the NIST records in 2005.

Till date, protocols that run the web, such as the open-

shortest-path-first (OSPF) and many other network

packet switching protocols use the greedy strategy to

minimize time spent on a network.

Greedy Strategies and Decisions

Logic in its easiest form was boiled down to “greedy” or “not

greedy”. These statements were defined by the approach taken

to advance in each algorithm stage. For example, Djikstra’s

algorithm utilized a stepwise greedy strategy identifying hosts

on the Internet by calculating a cost function. The value

returned by the cost function determined whether the next

path is “greedy” or “non-greedy”. In short, an algorithm ceases

to be greedy if at any stage it takes a step that is not locally

greedy. The Greedy problems halt with no further scope of

greed.

https://www.guru99.com/

11

Characteristics of the Greedy
Approach

The important characteristics of a Greedy method algorithm

are:

There is an ordered list of resources, with costs or value

attributions. These quantify constraints on a system.

You will take the maximum quantity of resources in the

time a constraint applies.

For example, in an activity scheduling problem, the

resource costs are in hours, and the activities need to be

performed in serial order.

Why use the Greedy Approach?

Here are the reasons for using the greedy approach:

The greedy approach has a few tradeoffs, which may make

it suitable for optimization.

One prominent reason is to achieve the most feasible

solution immediately. In the activity selection problem

(Explained below), if more activities can be done before

finishing the current activity, these activities can be

performed within the same time.

Another reason is to divide a problem recursively based

on a condition, with no need to combine all the solutions.

https://www.guru99.com/

12

In the activity selection problem, the “recursive division”
step is achieved by scanning a list of items only once and

considering certain activities.

How to Solve the activity
selection problem

In the activity scheduling example, there is a “start” and

“finish” time for every activity. Each Activity is indexed by a

number for reference. There are two activity categories.

1. considered activity: is the Activity, which is the

reference from which the ability to do more than one

remaining Activity is analyzed.

2. remaining activities: activities at one or more indexes

ahead of the considered activity.

The total duration gives the cost of performing the activity.

That is (finish - start) gives us the durational as the cost of an

activity. You will learn that the greedy extent is the number of

remaining activities you can perform in the time of a

considered activity.

Architecture of the Greedy
approach

STEP 1) Scan the list of activity costs, starting with index 0 as

the considered Index.

STEP 2) When more activities can be finished by the time,

the considered activity finishes, start searching for one or

more remaining activities.

STEP 3) If there are no more remaining activities, the current

remaining activity becomes the next considered activity.

https://www.guru99.com/

13

Repeat step 1 and step 2, with the new considered activity. If

there are no remaining activities left, go to step 4.

STEP 4) Return the union of considered indices. These are

the activity indices that will be used to maximize throughput.

https://www.guru99.com/

14

âssgn Remwcng‹ndex

https://www.guru99.com/

15

#include<iostream>

#include<stdio.h>

#include<stdlib.h>

#define MAX_ACTIVITIES 12

using namespace std;

class TIME

{

public:

int hours;

public: TIME()

{

hours = 0;

}

};

Architecture of the Greedy Approach

Code Explanation

Explanation of code:

1. Included header files/classes

2. A max number of activities provided by the user.

https://www.guru99.com/

16

class Activity

{

public:

int index;

TIME start;

TIME finish;

public: Activity()

{

start = finish = TIME();

}

};

Explanation of code:

1. The namespace for streaming operations.

2. A class definition for TIME

3. An hour timestamp.

4. A TIME default constructor

5. The hours variable.

https://www.guru99.com/

17

class Scheduler

{

public:

int considered_index,init_index;

Activity *current_activities = new

Activity[MAX_ACTIVITIES];

Activity *scheduled;

Explanation of code:

1. A class definition from activity

2. Timestamps defining a duration

3. All timestamps are initialized to 0 in the default

constructor

Explanation of code:

1. Part 1 of the scheduler class definition.

2. Considered Index is the starting point for scanning the

array.

3. The initialization index is used to assign random

timestamps.

4. An array of activity objects is dynamically allocated using

the new operator.

https://www.guru99.com/

18

Scheduler()

{

considered_index = 0;

scheduled = NULL;

...

...

for(init_index = 0; init_index < MAX_ACTIVITIES;

init_index++)

{

current_activities[init_index].start.hours =

rand() % 12;

current_activities[init_index].finish.hours =

current_activities[init_index].start.hours +

(rand() % 2);

printf("\nSTART:%d END %d\n",

current_activities[init_index].start.hours

,current_activities[init_index].finish.hours);

}

…
…

5. The scheduled pointer defines the current base location

for greed.

Explanation of code:

1. The scheduler constructor - part 2 of the scheduler class

definition.

2. The considered index defines the current start of the

current scan.

3. The current greedy extent is undefined at the start.

https://www.guru99.com/

19

public:

Activity * activity_select(int);

};

Activity * Scheduler :: activity_select(int

considered_index)

{

this->considered_index = considered_index;

int greedy_extent = this->considered_index + 1;

…
…

Explanation of code:

1. A for loop to initialize start hours and end hours of each

of the activities currently scheduled.

2. Start time initialization.

3. End time initialization always after or exactly at the start

hour.

4. A debug statement to print out allocated durations.

Explanation of code:

1. Part 4 - the last part of the scheduler class definition.

2. Activity select function takes a starting point index as the

base and divides the greedy quest into greedy

subproblems.

https://www.guru99.com/

20

Activity * Scheduler :: activity_select(int

considered_index)

{

while((greedy_extent < MAX_ACTIVITIES) &&

((this->current_activities[greedy_extent]).start.hours <

(this->current_activities[considered_index]).finish.hours

))

{

printf("\nSchedule start:%d \nfinish%d\n activity:%d\n",

(this->current_activities[greedy_extent]).start.hours,

(this->current_activities[greedy_extent]).finish.hours,

greedy_extent + 1);

greedy_extent++;

}

…
...

1. Using the scope resolution operator (::), the function

definition is provided.

2. The considered Index is the Index called by value. The

greedy_extent is the initialized just an index after the

considered Index.

Explanation of code:

1. The core logic- The greedy extent is limited to the number

of activities.

2. The start hours of the current Activity are checked as

schedulable before the considered Activity (given by

considered index) would finish.

3. As long as this possible, an optional debug statement is

printed.

https://www.guru99.com/

21

...

if (greedy_extent <= MAX_ACTIVITIES)

{

return activity_select(greedy_extent);

}

else

{

return NULL;

}

}

int main()

{

Scheduler *activity_sched = new Scheduler();

activity_sched->scheduled = activity_sched-

>activity_select(

activity_sched->considered_index);

return 0;

}

4. Advance to next index on the activity array

Explanation of code:

1. The conditional checks if all the activities have been

covered.

2. If not, you can restart your greedy with the considered

Index as the current point. This is a recursive step that

greedily divides the problem statement.

3. If yes, it returns to the caller with no scope for extending

greed.

https://www.guru99.com/

22

Explanation of code:

1. The main function used to invoke the scheduler.

2. A new Scheduler is instantiated.

3. The activity select function, which returns a pointer of

type activity comes back to the caller after the greedy

quest is over.

Output:

START:7 END 7

START:9 END 10

START:5 END 6

START:10 END 10

START:9 END 10

Schedule start:5

finish6

activity:3

Schedule start:9

finish10

activity:5

Limitations of Greedy
Technique

It is not suitable for Greedy problems where a solution is

required for every subproblem like sorting. In such Greedy

algorithm practice problems, the Greedy method can be

wrong; in the worst case even lead to a non-optimal solution.

https://www.guru99.com/

23

Therefore the disadvantage of greedy algorithms is using not

knowing what lies ahead of the current greedy state.

Below is a depiction of the disadvantage of the Greedy

method:

In the greedy scan shown here as a tree (higher value higher

greed), an algorithm state at value: 40, is likely to take 29 as

the next value. Further, its quest ends at 12. This amounts to a

value of 41. However, if the algorithm took a sub-optimal path

or adopted a conquering strategy. then 25 would be followed

by 40, and the overall cost improvement would be 65, which is

valued 24 points higher as a suboptimal decision.

Examples of Greedy Algorithms

Most networking algorithms use the greedy approach. Here is

a list of few Greedy algorithm examples:

Prim’s Minimal Spanning Tree Algorithm

Travelling Salesman Problem

Graph - Map Coloring

Kruskal’s Minimal Spanning Tree Algorithm

Dijkstra’s Minimal Spanning Tree Algorithm

Graph - Vertex Cover

https://www.guru99.com/

24

Knapsack Problem

Job Scheduling Problem

Summary:

To summarize, the article defined the greedy paradigm,

showed how greedy optimization and recursion, can help you

obtain the best solution up to a point. The Greedy algorithm is

widely taken into application for problem solving in many

languages as Greedy algorithm Python, C, C#, PHP, Java, etc.

The activity selection of Greedy algorithm example was

described as a strategic problem that could achieve maximum

throughput using the greedy approach. In the end, the

demerits of the usage of the greedy approach were explained.

https://www.guru99.com/

25

Chapter 2: Circular Linked
List: Advantages and

Disadvantages

What is a Circular Linked List?

A circular linked list is a sequence of nodes arranged such a

way that each node can be retraced to itself. Here a “node” is a

self-referential element with pointers to one or two nodes in

it’s immediate vicinity. Below is a depiction of a circular linked

list with 3 nodes.

Here, you can see that each node is retraceable to itself. The

example shown above is a circular singly linked list. Note: The

most simple circular linked list, is a node which traces only to

itself as shown

In this circular linked list tutorial, you will learn:

Basic Operations in Circular
Linked lists

https://www.guru99.com/

26

The basic operations on a circular linked list are:

1. Insertion

2. Deletion and

3. Traversal

Insertion is the process of placing a node at a specified

position in the circular linked list.

Deletion is the process of removing an existing node from

the linked list. The node can be identified by the

occurrence of its value or by its position.

Traversal of a circular linked list is the process of

displaying the entire linked list’s contents and retracing

back to the source node.

In the next section, you will understand insertion of a node,

and the types of insertion possible in a Circular Singly Linked

List.

Insertion Operation

Initially, you need to create one node which points to itself as

shown in this image. Without this node, insertion creates the

first node.

Next, there are two possibilities:

Insertion at the current position of the circular linked list.

This corresponds to insertion at the beginning of the end

of a regular singular linked list. In a circular linked list,

the beginning and the end are the same.

https://www.guru99.com/

27

Insertion after an indexed node. The node should be

identified by an index number corresponding to its

element value.

For inserting at the beginning/end of the circular linked list,

that is at the position where the first-ever node was added,

You will have to break the existing self-link to the existing

node

The new node’s next pointer will link to the existing node.

The last node’s next pointer will point to the inserted

node.

NOTE: The pointer that is the token master or the

beginning/end of the circle can be changed. It will still return

to the same node on a traversal, discussed ahead. Steps in (a)

i-iii are shown below:

(Existing node)

STEP 1) Break the existing link

STEP 2) Create a forward link (from new node to an existing

node)

https://www.guru99.com/

28

STEP 3) Create a loop link to the first node Next, you will try

insertion after a node. For example, let us insert “VALUE2”
after the node with “VALUE0”. Let us assume that the starting

point is the node with “VALUE0”.

You will have to break the line between the first and

second node and place the node with “VALUE2” in

between.

The first node’s next pointer must link to this node, and

this node’s next pointer must link to the earlier second

node.

The rest of the arrangement remains unchanged. All

nodes are retraceable to themselves.

NOTE: Since there is a cyclic arrangement, inserting a node

involves the same procedure for any node. The pointer that

completes a cycle completes the cycle just like any other node.

This is shown below:

(Let us say there are only two nodes. This is a trivial case)

https://www.guru99.com/

29

STEP 1) Remove the inner link between the connected nodes

STEP 2) Connect the left-hand side node to the new node

STEP 3) Connect the new node to the right hand side node.

Deletion Operation

Let us assume a 3-node circular linked list. The cases for

deletion are given below:

Deleting the current element

Deletion after an element.

https://www.guru99.com/

30

Deletion at the beginning/end:

1. Traverse to the first node from the last node.

2. To delete from the end, there should be only one traversal

step, from the last node to the first node.

3. Delete the link between the last node and the next node.

4. Link the last node to the next element of the first node.

5. Free the first node.

(Existing setup)

STEP 1) Remove the circular link

STEPS 2) Remove the link between the first and next, link

the last node, to the node following the first

STEP 3) Free /deallocate the first node Deletion after a node:

1. Traverse till the next node is the node to be deleted.

https://www.guru99.com/

31

2. Traverse to the next node, placing a pointer on the

previous node.

3. Connect the previous node to the node after the present

node, using its next pointer.

4. Free the current (delinked) node.

STEP 1) Let us say that we need to delete a node with

“VALUE1.”

STEP 2) Remove the link between the previous node and the

current node. Link its previous node with the next node

pointed by the current node (with VALUE1).

STEP 3) Free or deallocate the current node.

Traversal of a Circular Linked
List

https://www.guru99.com/

32

To traverse a circular linked list, starting from a last pointer,

check if the last pointer itself is NULL. If this condition is

false, check if there is only one element. Otherwise, traverse

using a temporary pointer till the last pointer is reached again,

or as many times as needed, as shown in the GIF below.

Advantages of Circular Linked
List

Some of the advantages of circular linked lists are:

1. No requirement for a NULL assignment in the code. The

circular list never points to a NULL pointer unless fully

deallocated.

2. Circular linked lists are advantageous for end operations

since beginning and end coincide. Algorithms such as the

Round Robin scheduling can neatly eliminate processes

which are queued in a circular fashion without

encountering dangling or NULL-referential pointers.

3. Circular linked list also performs all regular functions of a

singly linked list. In fact, circular doubly linked lists

discussed below can even eliminate the need for a full-

length traversal to locate an element. That element would

at most only be exactly opposite to the start, completing

just half the linked list.

Disadvantages of Circular
Linked List

https://www.guru99.com/

33

#include<stdio.h>

#include<stdlib.h>

struct node

{

int item;

struct node *next;

};

struct node* addToEmpty(struct node*,int);

struct node *insertCurrent(struct node *, int);

struct node *insertAfter(struct node *, int, int);

struct node *removeAfter(struct node *, int);

struct node *removeCurrent(struct node *);

void peek(struct node *);

int main()

{
...

The disadvantages in using a circular linked list are below:

1. Circular lists are complex as compared to singly linked

lists.

2. Reverse of circular list is a complex as compared to singly

or doubly lists.

3. If not handled carefully, then the code may go in an

infinite loop.

4. Harder to find the end of the list and loop control.

5. Inserting at Start, we have to traverse the complete list to

find the last node. (Implementation Perspective)

Singly Linked List as a Circular
Linked List

You are encouraged to attempt to read and implement the

code below. It presents the pointer arithmetic associated with

circular linked lists.

https://www.guru99.com/

34

int main()

{

Explanation of code:

1. The first two lines of code are the necessary included

header files.

2. The next section describes the structure of each self-

referential node. It contains a value and a pointer of the

same type as the structure.

3. Each structure repeatedly links to structure objects of the

same type.

4. There are different function prototypes for:

1. Adding an element to an empty linked list

2. Inserting at the currently pointed position of a

circular linked list.

3. Inserting after a particular indexed value in the

linked list.

4. Removing/Deleting after a particular indexed value

in the linked list.

5. Removing at the currently pointed position of a

circular linked list

5. The last function prints each element through a circular

traversal at any state of the linked list.

https://www.guru99.com/

35

struct node *insertCurrent(struct node *last, int data)

{

Explanation of code:

1. For the addEmpty code, allocate an empty node using the

malloc function.

2. For this node, place the data to the temp variable.

3. Assign and link the only variable to the temp variable

4. Return the last element to the main() / application

context.

struct node *last = NULL;

last = insertCurrent(last,4);

last = removeAfter(last, 4);

peek(last);

return 0;

}

struct node* addToEmpty(struct node*last, int data)

{

struct node *temp = (struct node *)malloc(sizeof(struct

node));

temp->item = data;

last = temp;

last->next = last;

return last;

}

struct node *insertCurrent(struct node *last, int data)

https://www.guru99.com/

36

...

struct node *insertAfter(struct node *last, int data, int

item)

Explanation of code

1. If there is no element to insert, then you should make

sure to add to an empty list and return control.

2. Create a temporary element to place after the current

element.

3. Link the pointers as shown.

4. Return the last pointer as in the previous function.

if(last == NULL)

{

return

}

addToEmpty(last, data);

struct node *temp = (struct node *)malloc(sizeof(struct

node));

temp -> item = data;

temp->next = last->next;

last->next = temp;

return last;

}

struct node *insertAfter(struct node *last, int data, int

item)

{

struct node *temp = last->next, *prev = temp, *newnode

=NULL;

…

https://www.guru99.com/

37

Explanation of code:

1. If there is no element in the list, ignore the data, add the

current item as the last item in the list and return control

2. For every iteration in the do-while loop ensure that there

is a previous pointer that holds the last-traversed result.

3. Only then can the next traversal occur.

4. If the data is found, or temp reaches back to the last

pointer, the do-while terminates. The next section of code

decides what has to be done with the item.

{

struct node *temp = last->next, *prev = temp, *newnode

=NULL;

if (last == NULL)

{

return addToEmpty(last, item);

}

do

{

prev = temp;

temp = temp->next;

} while (temp->next != last && temp->item != data);

if(temp->item != data)

{

printf("Element not found. Please try again");

...

https://www.guru99.com/

38

Explanation of code:

1. If the entire list has been traversed, yet the item is not

found, display an “item not found” message and then

return control to the caller.

2. If there is a node found, and/or the node is not yet the last

node, then create a new node.

3. Link the previous node with the new node. Link the

current node with temp (the traversal variable).

...

if(temp->item != data)

{

printf("Element not found. Please try again");

return last;

}

else

{

newnode = (struct node *)malloc(sizeof(struct node));

newnode->item = item;

prev->next = newnode;

newnode->next = temp;

}

return last;

}

struct node *removeCurrent(struct node *last)

...

https://www.guru99.com/

39

struct node *removeCurrent(struct node *last)

{

if(last == NULL)

{

printf("Element Not Found");

return NULL;

}

struct node *temp = last->next;

last->next = temp->next;

free(temp);

return last;

}

struct node *removeAfter(struct node *last, int data)

struct node *removeAfter(struct node *last,int data)

{

4. This ensures that the element is placed after a particular

node in the circular linked list. Return to the caller.

Explanation of code

1. To remove only the last (current) node, check if this list is

empty. If it is, then no element can be removed.

2. The temp variable just traverses one link forward.

3. Link the last pointer to the pointer after the first.

4. Free the temp pointer. It deallocates the un-linked last

pointer.

https://www.guru99.com/

40

Explanation of code

1. As with the previous removal function, check if there is no

element. If this is true, then no element can be removed.

2. Pointers are assigned specific positions to locate the

element to be deleted.

3. The pointers are advanced, one behind the other. (prev

behind temp)

4. The process continues until an element is found, or the

next element retraces to the last pointer.

struct node *temp = NULL,*prev = NULL;

if (last == NULL)

{

printf("Linked list empty. Cannot remove any element\n");

return NULL;

}

temp = last->next;

prev = temp;

do

{

prev = temp;

temp = temp->next;

} while (temp->next != last && temp->item != data);

if(temp->item != data)

{

printf("Element not found");

...

https://www.guru99.com/

41

Explanation of program

1. If the element found after traversing the entire linked list,

an error message is displayed saying the item was not

found.

2. Otherwise, the element is delinked and freed in steps 3

and 4.

if(temp->item != data)

{

printf("Element not found");

return last;

}

else

{

prev->next = temp->next;

free(temp);

}

return last;

}

void peek(struct node * last)

{

struct node *temp = last;

if (last == NULL)

{
return;

https://www.guru99.com/

42

...

void peek(struct node * last)

{

struct node *temp = last;

if (last == NULL)

{

return;

}

if(last -> next == last)

{

printf("%d-", temp->item);

}

while (temp != last)

{

printf("%d-", temp->item);

temp = temp->next;

}
}

3. The previous pointer is linked to the address pointed as

“next” by the element to be deleted (temp).

4. The temp pointer is therefore deallocated and freed.

Explanation of code

1. The peek or traversal is not possible if there are zero

needed. The user needs to allocate or insert a node.

2. If there is only one node, there is no need to traverse, the

node’s content can be printed, and the while loop does not

https://www.guru99.com/

43

execute.

3. If there is more than one node, then the temp prints all

the item till the last element.

4. Moment the last element is reached, the loop terminates,

and the function returns call to the main function.

Applications of the Circular
Linked List

Implementing round-robin scheduling in system

processes and circular scheduling in high-speed graphics.

Token rings scheduling in computer networks.

It is used in display units like shop boards that require

continuous traversal of data.

https://www.guru99.com/

44

https://guru99.thrivecart.com/algorithm-ebook

	Learn Design and Analysis of Algorithms in 1 Day
	Greedy Strategies and Decisions
	Characteristics of the Greedy Approach
	Why use the Greedy Approach?
	How to Solve the activity selection problem
	Architecture of the Greedy approach
	Code Explanation
	Explanation of code:
	Explanation of code:
	Explanation of code:
	Explanation of code:
	Explanation of code:
	Explanation of code:
	Explanation of code:
	Explanation of code:
	Explanation of code:
	Explanation of code:

	Limitations of Greedy Technique
	Examples of Greedy Algorithms
	Summary:

	What is a Circular Linked List?
	Basic Operations in Circular Linked lists
	Insertion Operation
	Deletion Operation
	Traversal of a Circular Linked List
	Advantages of Circular Linked List
	Disadvantages of Circular Linked List
	Singly Linked List as a Circular Linked List
	Explanation of code:
	Explanation of code:
	Explanation of code
	Explanation of code:
	Explanation of code:
	Explanation of code
	Explanation of code
	Explanation of program
	Explanation of code

	Applications of the Circular Linked List

